TSTOL (9)

NAME

MISC. REFERENCE MANUAL PAGES TSTOL (9)

tstol — TPOCC Systems Test and Operations Language (TSTOL) interpreter

SYNOPSIS

tstol [-answer] [-call [host:]server[@host]] [-debug] [-Debug debug file] [-events mission]
[-FIFO base name] [-host name] [-mission name] [-quotesl] [-quotes?]

[-server name] [-single user] [-startup directive] [-[no]sysvar] [-tty]

[-verify level] [-vperror] [-@ semaphore]

DESCRIPTION

tstol is the command interpreter for the TPOCC Systems Test and Operations Language (TSTOL).
TSTOL is derived from previous generations of the Systems Test and Operations Language (STOL)
used in existing NASA satellite control centers.

TSTOL is a procedural command language consisting of a core set of generic commands, supplemented
by mission-specific extensions. The generic TSTOL commands provide the following capabilities:

)

2

3

(4)

©)

(6)

(")

(8)

Various data types (decimal, octal, hexadecimal, and binary integers; floating point
numbers; character strings; logical constants; and date/time constants).

A full complement of arithmetic, logical, and relational operators are implemented.
Mixed-mode arithmetic is supported. A large number of built-in functions are available,
including the standard trigonometric functions.

Global and procedure-local variables. System variables (e.g., telemetry mnemonics)
resident on remote systems can be referenced and assigned.

Procedures (TSTOL ‘‘subroutines’’) can be defined, invoked, and controlled. Arguments
can be passed to procedures. if-then-else blocks and looping constructs (do, for, and
while) can be used to affect control flow within a procedure. TSTOL also includes a
simple macro substitution capability.

Foreign directives (i.e., mission-specific directives) can be defined and invoked. Foreign
directives are programmed in TSTOL (they look just like TSTOL procedures), but they
are invoked and behave as if the directives were built-in to TSTOL. Foreign directives
can perform any valid TSTOL functions, including communicating with applications pro-
grams. Foreign directive definitions are usually read from an initiaization file when the
TSTOL server starts up.

Applications programs can carry on interactive dialogs with the operator via the TSTOL
parser.

The TSTOL parser can wait until a specified absolute time has been reached, until a cer-
tain amount of time has elapsed, or until a given expression evaluates to TRUE.

Multiple watchpoints can be set up to monitor the values of system variables (e.g.,
telemetry mnemonics). A reguested value can be sampled every N seconds (asynchro-
nous sampling) or when the value is decommutated (synchronous sampling). Whenever
a value is received, a user-defined foreign directive procedure is invoked and passed the
value of the system variable. Once activated, a watchpoint effectively executes in "back-
ground" mode; the operator can go on and enter other TSTOL directives, run procedures,
etc.

By defining a new set of foreign directives, a project can modify or extend the language recognized by
TSTOL - without changing the executable tstol program. Although the smplest foreign directives are
structured as a keyword followed by a list of parameters, TSTOL's support of regular expression pattern
matching allows foreign directives to apply sophisticated lexical and syntactical analysis to their com-
mand lines - again, without any changes to the executable tstol program.

Sun Release 4.1

Last change: 25 October 1993 1

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

This manual is divided into the following sections and subsections:

DESCRIPTION
Invocation
Run-Time Environment
OPTIONS
USAGE
Structure of Statements
Command Line History
Data Types and Constants
TSTOL Variables
System Variables
Local Internal Variables
Expressions and Assignment
Built-In Functions
Procedure Definition and Control
Argument Passign Mechanisms
Foreign Directives
Watchpoints
Operations Privileges
Regular Expressions
Generic TSTOL Commands
Sample TSTOL Server Procedure
Sample TSTOL Startup Procedure
FILES
LIMITATIONS
BUGS
VERSIONS

Invocation

tstol can be run in one of three modes. as a multi-user, network-based server; as a single-user,
network-based client; or as a single-user, terminal-based parser. If invoked as a server (see the -answer
command line option), tstol listens at an assigned network port for connection requests from client user
interface (Ul) processes. When a connection request is received from a prospective client, tstol forks a
child tstol process to service that connection. There may be many child tstol processes, each parsing
and processing commands from different Ul processes (or different command input windows in the
same Ul process). The child parsers can, in turn, establish network connections to other applications
programs (e.g., a spacecraft command processor).

tstol was originally written to be a network server; subsequent circumstances, however, made it neces-
sary for tstol to initiate the network connection with the Ul process. When invoked with the -call
option, tstol, rather than passively listening for connection requests, actively attempts to establish a net-
work connection with a Ul process functioning as a server.

If invoked with the -tty option, tstol inputs commands from and outputs messages directly to the
operator’s terminal. This stand-alone mode is useful for debugging and testing the tstol program.

The TSTOL executable is:
/home/tpocc/obj arch/tstol/tstol

To invoke tstol as a network-based server (the standard mode of operation), enter:
% tstol -mission mission

To invoke tstol as a network client, enter:

Sun Release 4.1 Last change: 25 October 1993 2

TSTOL (9)

MISC. REFERENCE MANUAL PAGES TSTOL (9)

% tstol -call server[@host] -mission mission

To invoke tstol as a terminal-based parser (for stand-alone testing), enter:

% tstol -tty -mission mission

Stand-alone testing of the network-based tstol server is possible using the -single_user command line
option (see the OPTIONS descriptions below):

% tstol -single user -mission mission

Run-Time Environment

tstol expects certain items to be present in its run-time environment. The names of most of these items
are based on the mission name (see the -mission option). tstol performs all case conversions needed to
construct the run-time environment names, regardless of how the mission name was specified on the
command line. The following items should be present when the parser is run:

1

Sun Release 4.1

Server name mission_tstol — determines the network port at which tstol listens for con-
nection requests from display processes. The server name (with mission in all lower case
letters) should be entered in the system /etc/services file; for example,

hst_tstol 24681/tcp
assigns server name ‘‘hst_tstol’’ to TCP port 24681.

Environment varisble $mission PROC FILE - specifies the defaults for missing com-
ponents of TSTOL procedure file names. For example, the following C Shell command
specifies the default directory (*‘/home/hst/source/procs’) and file extension (**.prc’’) for
procedure files:

setenv HST PROC FILE /home/hst/source/procy.prc

A ‘‘start TEST" directive would then read and execute the TSTOL procedure found in
/home/hst/sour ce/procstest.prc. $mission PROC FILE can also contain multiple direc-
tory (and/or extension) specifications, separated by commas or spaces. For example:

setenv HST PROC FILE "./.prc, /home/hst/source/procs™

If the operator enters a ‘‘start TEST'' directive, tstol would first search its current work-
ing directory for test.prc and then search /home/hst/source/procs. A directory
specification without an extension must have a trailing “‘/"’. Note that the parser's
current working directory is not necessarily the operator’'s current directory, particularly
if tstol was brought up as a network server. The cd directive will display and/or change
your parser’s current working directory.

Environment variable $mission SYV FILE - specifies the system variable definition file.
The information in this database file is used by tstol to access system variables. The
-nosysvar command line option inhibits the loading of this file.

Data Services subsystem — must be up and running if system variables will be accessed.
The data server should be running under the server name mission_data server on the
expected host (see the -host command line option and the %liv(host) internal variable).

Events subsystem (or a suitable substitute) — must be up and running. tstol’s interface to
the event logger requires the setup of 4 environment variables:

$misson CLASS FILE - the event classes definition file.

$mission EVENT BASE - event message base number definitions for the vari-
ous subsystems.

$misson EVENT TEXT - event message texts.

Last change: 25 October 1993 3

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

$LOG SUBSY'S - the base server name of the event logger.

OPTIONS
—answer
Specifies that tstol is to function as a network server, listening for and answering connection
requests from clients. This is tstol’s default mode of operation. The server port name at which
tstol listens for requests from prospective clients is, by default, "mission tstol”, but this name
may be overridden with the -server option. Unless tstol is in single-user mode (see the
-single_user option), a new subprocess is spawned to service each new client connection.

—call [host:]server[@host]]
Specifies that tstol is to function as a network client. Instead of listening for connecting clients
(see the -answer option), tstol will initiate a network contact, sending the specified server a
connection request. This mode automatically puts tstol in single-user mode (see the
-single user option): rather than spawning a subprocess, tstol will itself service the network
connection. The name of the host on which the server to be contacted is running can be
specified in either of two forms shown.

—debug
Turns debug output (written to stdout) on.

—-Debug debug file
Turns debug output (written to debug _file) on.

—events mission
Specifies a mission name for the events subsystem. Normally, your project’s mission name
(specified using the -mission option) is used to construct the database file names and network
server names required by the events subsystem interface. The -events option, which should be
used in conjunction with the -mission option, lets you specify a different mission name for the
events subsystem interface. This capability allows you, for instance, to test a new mission’s
TSTOL procedures while using an existing mission’s event message database and event logger.

-FIFO base name
Enables operator 1/O through FIFOs (named pipes) and specifies the base name for the FIFOs.
Two FIFOs are required: an input FIFO and an output FIFO. The parser appends *‘.in"’ and
‘*.out’’ to the base name to construct the input and output FIFO names, respectively.

-host name
Specifies the implied host name for accessing system variables; a host can still be explicitly
specified in a system variable reference. host _name is the name of the computer on which the
system variable data server resides; if the -host option is not specified, host name defaults to
the local host. The implied host name can be changed after the parser is up by assigning a
new value to the %liv(host) internal variable.

—mission mission
Specifies the mission name. This name (in lower case) is used to construct the mission-specific
start-up file and server name and (in upper case) is also assigned to TSTOL global variable,
MISSION.

—quotesl
Controls the delimiters for strings and quoted identifiers. If -quotesl is specified, string con-
gtants are delimited by single-quotes (*) and identifiers containing special characters are delim-
ited by double-quotes ("). A delimiter can be inserted in a string/identifier by entering it twice.

—quotes?
Controls the delimiters for strings and quoted identifiers. If -quotes2 is specified (the default),
string constants are delimited by double-quotes (") and identifiers containing special characters
are delimited by single-quotes (’). A delimiter can be inserted in a string/identifier by entering
it twice.

Sun Release 4.1 Last change: 25 October 1993 4

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

-server name
Specifies a network server name for the TSTOL server. This name, which must be entered
along with a port number in the /etc/services file, defaults to mission_server (where mission is
converted to al lower case).

-single_user
Brings the TSTOL server up in single-user mode. In this mode, the server will answer a single
network connection and will service that client itself, rather than forking a child process to
handle the connection. Single-user mode makes it easier to run the TSTOL server in the
debugger.

—startup directive
Specifies a TSTOL directive to be executed at start-up time. This will typically be a start
directive that runs a start-up procedure.

—[no]sysvar
Inhibits the loading of the system variable database. Although system variables are then not
recognized or accessible, TSTOL server initialization is speeded up — an advantage during up-
and-down testing of the parser.

—tty Invokes the parser as a stand-alone program that reads its operator input from stdin, (i.e., the
TTY), rather than the network. vperror() message output is automatically enabled (see the
-vperror option).

-verify level

Enables malloc(3) heap verification. If level is O (the default), malloc(3) behaves normally. If
level is 1, the system checks the arguments passed to malloc(3) and the heap blocks immedi-
ately affected by each call. If level is 2, the system verifies the integrity of the entire heap on
each call to malloc(3). Running at level 2 is useful for detecting (presumably) inadvertent
corruption of your allocated memory. This option is only supported (i) if the program was
linked with the TPOCC libmalloc library, or (ii) under SunOS, if the program was linked with
the system’s /usr/lib/debug/malloc.o file; see the SUnOS documentation on malloc(3) for more
information.

-vperror
Turns vperror() message output on. vperror() messages are low-level error messages generated
by TPOCC library functions, normally, they are disabled. If enabled, the messages are output
to stderr.

—@ semaphore
Specifies the ID of a semaphore that tstol should signal upon receiving and accepting a con-
nection request. This option is used under VMS when running tstol with the TPOCC
PROSPER program. PROSPER spawns tstol in single-user, network server mode (see the
-single_user option) to listen for connection requests from prospective clients. When a con-
nection request is received, tstol closes its listening port and notifies PROSPER (by signalling
the semaphore) that a new tstol listener can be spawned.

USAGE
The TPOCC Systems Test and Operations Language (TSTOL) is a genera-purpose, programmable,
operator interface language. The capabilities of TSTOL can be divided into two categories. generic
capabilities and mission-specific capabilities. The following sections describe (i) the basics of the
TSTOL language, (ii) the generic command set, and (iii) the mission-specific command sets.

Structure of Statements

Sun Release 4.1 Last change: 25 October 1993 5

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

As in prior generations of STOL, a TSTOL statement can consist of up to four possible fields:
[label:] directive [arguments] [; comment]

An alphanumeric label, if present, is the first field in the statement and is followed by a colon; the first
character of a label must be aphabetic. Labels may appear on a line by themselves or may precede a
directive on the same line. Reserved words (e.g., BEGIN, END) may be used as labels without causing
syntax errors. Examples: **‘ADD 2 AND 2", “*RETRY_COMMAND:"’, €tc.

A command directive is the keyword that identifies the command to be executed. Directive keywords
are reserved words and generally should not be used as identifiers (e.g., variable names, mnemonics,
etc.). Keywords for built-in directives can be used for foreign directives; typing in such a keyword then
invokes the foreign directive. The built-in directive can still be executed by prefixing the keyword with
a‘''\"’. Examples. ‘‘acquire’, ‘“‘page’, ‘‘\reset’’, etc.

Arguments to a command are separated from the directive keyword by blanks or tabs, multiple argu-
ments are separated from each other by blanks, commas, or tabs. Example: ‘‘page page name,
update rate’’

A semi-colon (‘*;"") in a statement introduces a comment. Comments can be on a line al by them-
selves. Blank lines and form feeds are also allowed. Example: ‘‘history on ; Turn on NASCOM
block recording.’”’

Commands with many arguments can be continued on successive lines by ending each line with two
semi-colons (**;;"’). These line continuation markers also double (no pun intended!) as comment delim-
iters.

Command Line History

tstol implements a primitive command line history mechanism, similar to that of the UNIX csh(1). The
parser saves the most recent N lines of operator input; the currently saved set of lines can be displayed
on the operator’s screen. Particular lines can be recalled upon request; a recalled line is submitted to
the parser as if the operator typed in the directive again. An exclamation mark (*‘!"") is used to access
the command line history:

I Recalls the previous directive and submits it to tstol.

In Recalls the n-th line of operator input.
Istring Recalls the most recent line of operator input that contains the specified string.
@ Displays a list of the currently-saved input lines on the operator’s screen.

By default, tstol saves the 20 most recent lines of operator input. This humber can be changed by set-
ting a local internal variable (see below), %liv(savehist).

Data Types and Constants

The TSTOL parser supports a number of different data types, including integers, reals, and character
strings. Integer constants range from -2[1B1-1 to +2[1B1 and can be specified in decimal, octal, or
hexadecimal using the Standard C conventions for integer constants:

Decimal Constants: 37 -1
Octal Constants: 045 O7777777
Hexadecimal Constants: 0x2BAD OxFAB4

TSTOL discourages the use of, but supports, the old STOL notations for binary (B), octal (O), and hex-
adecimal (H or X) numbers:

B’100101" 0O’1234567 H'DAD1 X'C3D2

Sun Release 4.1 Last change: 25 October 1993 6

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

Floating point numbers are stored internally as double-precision reals with a possible range of approxi-
mately -4.9E-324 to +1.8E308 (on computers that utilize the |IEEE floating point representation); they
can be written in a variety of ways (‘'D’’ and ‘'E’’ are accepted interchangeably for the exponent):

10 -8795 225D03 3.6E-01

Character string constants should be enclosed in double-quotes, a double-quote can be inserted in a
string by typing in two consecutive double-quotes:

"S/C Attitude” "OFF" "can""t means won""t"

Single-quotes are used to delimit identifiers containing special characters. This single- vs. double-quote
convention can be reversed using the -quotesl command line option.

Date/time constants are expressed in the form YY-DDD-HH:MM:SSLLL, where the fields are year, day
of year, hour, minutes, seconds, and milliseconds, respectively. Embedded blanks are not permitted;
leading zeroes are not required. One or more fields in a date/time constant may be omitted, subject to
the following rules:

— A colon (‘*:"") must be present in order for the parser to recognize the input as a date/time
congtant.

— Only leading and trailing fields may be omitted.

- |If, after leading or trailing fields are omitted, the form of the constant is ambiguous,
TSTOL assumes the leftmost definition. For example, XX:ZZ is interpreted as HH:MM, not
MM:SS

— Leading and trailing delimiters are not allowed.

Missing fields are supplied by TSTOL: the year and day default to the current date; the remaining fields
default to zero. In the year field of a date/time constant, ‘70"’ through ‘*99'" represent the years 1970
through 1999; ‘00"’ through ‘*69"" represent the years 2000 through 2069.

Logical congtants can be written in a number of forms:

true falses .TRUE. .FALSE. .T. .F

UNIX pathnames (file names) are recognized in certain instances. The standard C Shell file naming
conventions are followed, although ‘‘$var’’ references to environment variables should be avoided (they
will cause unwanted text subgtitution). Unfortunately, UNIX file name conventions conflict with
TSTOL’s lexical conventions, for example, “/.login is an acceptable pathname in TSTOL, but
/home/tpocc looks like a badly-formed arithmetic expression. If a desired pathname might be mistaken
for a variable name or for an arithmetic expression, enclose the file name in quotes (either double- or
single-quotes can be used):

“/login startup.prc ’this file' "./that file"

Other data types (e.g., telemetry values) are supported to some degree, but they primarily come into
play when accessing system variables.

TSTOL Variables

TSTOL variables are distinguished by their name, their scope, and their data type. TSTOL follows the
usual naming conventions regarding variable names: an initial alphabetic character (‘*A’’-**Z"’) fol-
lowed by zero or more alphanumeric characters or underscores (‘' ''). TSTOL variable names are
case-insensitive (e.g., ‘‘BAbCd’ and ‘‘BaBcD’’ are equivalent identifiers) and are limited to 32 charac-
ters. Specia characters can be embedded in variable names by enclosing the entire variable name in
single quotes (but see the -quotesl command line option).

The scope of a variable defines its accessibility. Procedure-local variables (declared by the local direc-
tive) can only be referenced within a procedure and not from a parent or child procedure. Formal
parameters passed by value are, for all practical purposes, procedure-local variables. Procedure-local

Sun Release 4.1 Last change: 25 October 1993 7

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

variables disappear when the procedure exits. Procedure-global variables (declared using the global
directive) are global to all procedures; they can be accessed at any level of procedure nesting or when
no procedures are active. (The ‘‘console-local’’ variables, X1..X16, of MAE STOL can be emulated by
declaring procedure-global variables X1 through X16.) Process-global variables (ak.a. system vari-
ables) are global to all parser processes and, in a sense, to all the computers on the network.

The resolution of variable references follows the hierarchy described above. Firdt, the variable is
looked up in the procedure-local symbol table. If the variable is not found there, the procedure-global
symbol table is searched. If that search fails, the system variable access table is consulted.

TSTOL variables assume the data types of the values assigned to them, usually integers, reas, or
strings. More exotic data types are possible via references to system variables.

The following procedure-global variables are predefined in TSTOL ;

MISSION is assigned the mission name specified by the -mission command line option. The
value assigned to MISSION is all upper case, regardiess of how it was specified on
the command line. MISSION is assigned its value before the server initialization
file is loaded and executed, so a multi-mission initialization procedure can test
MISSION'’s value and configure the TSTOL parser as needed. Of course, any
other TSTOL procedure can also reference MISSION.

%status isaglobal status flag intended for use in programming foreign directives. % status
is automatically set to true if a command completion status message received from
a remote process indicates success and false if the message indicates failure.
Foreign directives (and TSTOL procedures) can test and set %status as they see
fit.

System Variables

Variables external to a parser process are caled system variables. These variables are stored in shared
memory segments on the local host computer or possibly on remote hosts. Examples of system vari-
ables include current telemetry values, processing statistics, etc. Each system variable is uniquely
identified by three items. the host computer on which the variable is resident, the process that "owns"
the variable, and the variable’'s mnemonic (name).

Due to the distributed nature of system variables, TSTOL utilizes a special construct to reference sys
tem variables:

mnemoni c[#process| [@host] [[index]]

A system variable can be referenced by mnemonic only, if the mnemonic uniquely identifies the system
variable (i.e., no two processes share a mnemonic name) and the name has not been superseded by a
procedure-local or -global variable name. Otherwise, the process name must be specified. If a host is
not specified, the default system variable host (see the -host command line option and the %liv(host)
internal variable) is used. The one-dimensional array index (1..N) is optional.

If used in the context of an expression (e.g, on the right hand side of a let directive), a system variable
reference retrieves the value of a system variable:

let local variable = mnemonic[#process][@host] [[indexX]]
To store a value in a system variable, place the reference on the left hand side of alet directive:
let mnemonic|#process| [@host][[index]] = expr

Recalling or storing a system variable is actualy performed by a TPOCC data server on the host com-
puter. The first reference to a system variable on host causes the TSTOL parser to establish a network
connection to host’'s data server. When recalling a value, the parser passes process, mnemonic, and
index to the data server; the data server then returns the value of the variable to the parser. To store a
value, the parser passes process, mnemonic, index, and expr to the data server; the data server then

Sun Release 4.1 Last change: 25 October 1993 8

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

stores the value in its local system variable shared memory.

A system variable reference can be prefixed with the *‘P@’" modifier in order to retrieve the processed
value of the variable. If the variable contains an analog telemetry point, its processed value is the
current raw telemetry count converted to engineering units (EU) - a real number. The conversion is
performed by the telemetry decommutation process, not by tstol. If the variable is a discrete telemetry
or non-telemetry system variable, then its processed value is the state name (a string) assigned to the
current value; this trandation is performed by tstol.

The telemetry decommutation process stores telemetry values in Current Value Table (CVT) entries.
CVT entries can be of severa types: signed and unsigned integer, single- and double-precision floating
point, text, and time. A CVT entry generaly consists of 3 fields: the telemetry point’s current raw
value, the processed value (in engineering units), and a status word whose bits indicate the quality of
the telemetry value. Normally, when you assign a value to a telemetry variable via TSTOL, you're
simply replacing the telemetry point’s raw value; the EU-converted value and the status word are not
updated. It is possible, for testing purposes, to update these fields from TSTOL. To do so, just encode
the 3 field's values in a string:

let system variable = "raw value EU value status word"
The format of the different fields depends upon the data type of the CVT:
CVT SLI (signed long integer)

CVT ULI (unsigned long integer)
The raw value and the status word can be specified in decimal, octal, or hexade-
cimal, if you follow the standard C conventions for numeric constants; i.e., N, ON,
and OxN, respectively. The EU-converted value should be specified as a real
number, following the standard C conventions for floating point numbers.

CVT_SFP (single-precision floating point)

CVT_DFP (double-precision floating point)
The raw and EU-converted values should be specified as real numbers, following
the standard C conventions for floating point numbers. The status word can be
specified in decimal, octal, or hexadecimal.

CVT TEXT (text)
A CVT TEXT entry only has 2 fields: the raw text and the status word. The raw
value for CVT _TEXT entries is specified as a sequence of ASCII characters, with
no embedded blanks or tabs. An arbitrary character can be included by specifying
the decimal, octal, or hexadecimal equivalent of the character, preceded by “‘\'".
The status word can be specified in decimal, octal, or hexadecimal. Example: let
SC TEXT = "Hello\041 0x6D4"

CVT TIME (time)

A CVT TIME entry itself has 3 fields: the raw time value received in the
telemetry stream, the raw value converted to UNIX time (seconds and
microseconds since 1970), and the status word. Assigning a value to a
CVT TIME entry requires 5 fields: the raw value, the time in seconds, the left-
over microseconds, a time status word, and the CVT status word. The raw time
value is specified as a sequence of ASCII characters, the same as is done for
CVT TEXT strings. The remaining fields can be specified in decimal, octal, or
hexadecimal.

Local Internal Variables

Sun Release 4.1 Last change: 25 October 1993 9

TSTOL (9)

MISC. REFERENCE MANUAL PAGES TSTOL (9)

Variables internal to a parser process are called local internal variables (L1V). LIVs are used to exam-
ine and control the internal workings of the parser, primarily for debugging and testing purposes. To
set the value of an interna variable, the variable is referenced on the left hand side of an assignment
statement using the special %liv construct:

let %liv(keyword) = expr

where keyword can be one of the following:

echo_network

echo_stored

errno

events

host
ignore_wait

lex_debug
libalex_debug

log_procedure

malloc_debug

malloc_trace

net_debug

savehist

Sun Release 4.1

enables or disables echoing on the operator’s display of network input and
output (e.g., commands to applications programs). Network 1/O is normally
invisible to the operator.

enables or disables echoing on the operator’s display of internally-stored
input. Stored input consists of directives that the parser submits to itself; for
instance, an earlier version of the dialog directive waited for a response from
its source by submitting and executing a pause directive. Stored input is
normally not displayed on the operator’s screen.

assigns a numeric value to the C Library global variable, errno.

terminates the current event logger connection and establishes a new connec-
tion to the event logger on host expr.

changes the default host name for system variable access to expr.

if expr evaluates to true, wait directives will be ignored — a real conveni-
ence during procedure testing.

enables or disables lex_util debug output (useful for monitoring what the
parser is reading).

enables or disables str dupl() debug output (useful for tracking down
memory leaks).

enables or disables the logging of executable procedure input. The echo
directive controls the echoing of procedure input to the operator’s screen.
%liv(log_procedure) controls the recording of procedure input in the events
log.

sets the debug level for malloc() heap verification. If expr is O (the default),
malloc() behaves normally. If expr is 1, the system checks the arguments
passed to malloc() (and its relatives); messages are written to stderr if errors
are detected. If expr is 2, the system verifies the integrity of the entire heap
on each call to malloc() (or one of its relatives); if an error is detected, the
parser aborts with a core dump. Running at level 2 is useful for detecting
(presumably) inadvertent corruption of your allocated memory. This option
is only supported (i) if the program was linked with the TPOCC libmalloc
library, or (ii) under SunOS if the program was linked with the system’s
lusr/lib/debug/malloc.o file; see the SunOS documentation on malloc(3) for
more information.

enables or disables malloc() trace output. This debug output, written to
stdout, traces the allocation and freeing of dynamic memory. Tracing is
only possible if the program was linked with the TPOCC libmalloc library.

enables or disables debug output from the TPOCC networking functions.
When debug of this type is enabled, data read from or written to any of the
network connections established by tstol is dumped to stdout in hexadecimal
and ASCII form.

adjusts the maximum number of operator input lines saved by tstol’s com-
mand line history facility; the default is 20.

Last change: 25 October 1993 10

TSTOL (9)

screen_debug

text_substitution

timeout

yydebug

MISC. REFERENCE MANUAL PAGES TSTOL (9)

enables or disables screen debugging (e.g., with the xstol program). If
screen debugging is enabled, tstol outputs file and line number information
to the display interface when executing procedures. Normally, screen debug-
ging is disabled.

enables or disables the application of text substitution to input lines. If text
subgtitution is enabled, a parameter reference (‘‘$" followed by a number or
a variable name) in the input text is replaced by the value of the parameter.
Usually, if no procedures or foreign directives are active, text substitution is
enabled. At the start of a procedure, text substitution is automatically
enabled. At the start of a foreign directive, text substitution is automatically
disabled.

sets the timeout value for dialog, pause, and transact directives and system
variable access to expr seconds; the default is 60 seconds. In the case of the
directives, the timeout value controls how long the parser will wait for the
applications task to respond (e.g., with a status message). During an attempt
to reference a system variable, the timeout value controls how long the
parser will wait for the data server to return the requested value.

enables or disables YACC debug output — you must be desperate!

Internal variables can also be referenced within an expression (e.g., on the right hand side of an assign-
ment statement):

% liv(keyword)

where diff erent keywords return diff erent values:

Sun Release 4.1

help
echo_network
echo_stored

errno

events

host

ignore wait
lex_debug
libalex debug
localhost
log_procedure
malloc_debug
malloc_marker

malloc_verify
net_debug

privileges

returns a string containing the possible keywords.
returns true if echoing of network 1/0 is enabled and false otherwise.

returns true if echoing of internally-stored input is enabled and false other-
wise.

returns the system error message corresponding to the current value of C
Library global variable, errno.

returns the name of the host on which the current event logger is running.
returns the default host used when accessing system variables.

returns true if wait directives will be ignored and false otherwise.
returns true if lex_util debug output is enabled and false otherwise.
returns true if str_dupl() debug output is enabled and false otherwise.
returns the name of the host machine on which tstol is running.

returns true if logging of procedure input is enabled and false otherwise.
returns the current malloc() debug level.

inserts a marker string in malloc()’'s list of alocated memory and returns a
string containing the address of the marker string. The marker can be used
(in a call to malloc_dump() or malloc totals()) to monitor memory allocation
activity after the marker’s creation.

calls malloc verify() to verify the integrity of the memory allocation heap.
true isreturned if the heap passed the test and false if the verification failed.

returns true if debug output for the TPOCC networking functions is enabled
and false otherwise.

returns a string containing a comma-separated list of the operator’s current

Last change: 25 October 1993 11

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

privileges. The access directive must be used to set the operator’s privileges.
screen_debug returns true if screen debugging is enabled and false otherwise.
text_substitution returns true if text substitution is enabled and false otherwise.

timeout returns the maximum number of seconds the parser will wait for (i) an appli-
cations task to respond with a message, or (ii) a remote data server to return
the value of a system variable.

version returns the version number of the TSTOL program. This number is actually
the version number of TSTOL's YACC source file, the most frequently
changed file in the program.

yydebug returns true if YACC debug output is enabled and false otherwise.
yydepth returns the current depth of the YACC token stack.

Expressions and Assignment

TSTOL supports the normal complement of arithmetic, logical, and relational expressions.

Arithmetic operations include addition (+), subtraction (-), multiplication (1), division (/), modulus
(mod), remainder (rem), and exponentiation (I). The data type of an arithmetic expression is deter-
mined by the data types of its operands. An expression consisting entirely of integer operands gives an
integer result. An expression involving at least one real number generates a real value. mod and rem
always return integers. A string containing a number is converted to the appropriate real or integer
value; eg., "123" + "4.56" is equivalent to 123 + 4.56.

Only addition and subtraction are defined for date/time constants. Date/time constants are represented
internally as the number of seconds and microseconds since January 1, 1970 (a UNIX convention).
Adding two date/time constants is allowed, but probably not meaningful. Adding or subtracting an
integer or real number X to or from a date/time constant produces a date/time constant offset by X
number of seconds. Subtracting a date/time constant from another date/time constant gives the
difference in seconds (a floating point number) between the two times.

The string concatenation operator (&) concatenates the string values of two expressions.

Logical operators (and, or, xor, not) accept humeric or logical operands and generate logical values of
true or false. In alogica expression, a zero-valued numeric operand is treated as false and a non-zero
value is treated as true. The left-to-right evaluation of subexpressions is short-circuited as soon as the
truth or falsity of a logical expression is known. (The standard FORTRAN dot notation for logical
operators and values is supported, but its use is discouraged.)

Date/time constants are given special treatment in logical expressions. If a date/time constant precedes
or is equal to the current GMT, it evaluates to true (i.e, the time is past). If the date/time constant is
greater than the current GMT, it evaluates to false (i.e., the time is till in the future).

Relational operators (=, <>, >, <, <=, >=) accept two operands of any data type and compare them. A
relational expression produces a logical value of true or false if the relational condition succeeds or
fails, respectively. If the two operands are of dissmilar data types that prevent a meaningful com-
parison, false is always returned. (The standard FORTRAN dot notation for relational operators is sup-
ported, but its use is discouraged.)

Ordered from highest to lowest, TSTOL operator precedences are as follows:

Exponentiation (I

Unary minus (-), unary plus (+)

Multiplication (), division (/), modulus (mod), and remainder (rem)
Addition (+), subtraction (-), and string concatenation (&)

Relational operators (=, <>, <, >, <=, >5)

Negation (not)

ok wbdpE

Sun Release 4.1 Last change: 25 October 1993 12

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

7. Conjunction (and)
8. Exclusive OR (xor)
9. Digunction (or)

Except for exponentiation, which is right-associative, operations at the same precedence level are
evaluated from left to right. Parentheses may be used to alter the order of evaluation.

In TSTOL, variables may be assigned a value in one of several ways. directly using the let or ask
directive, and indirectly by passing the variable by reference to a procedure.

Built-In Functions

TSTOL provides a number of built-in functions that ease the job of coding TSTOL procedures and
directive definitions; these functions can be used freely wherever an expression is alowed. In the tri-
gonometric functions, al angles are expressed in radians.

abs (expr) returns the absolute value of an expression.

nint (expr) returns the integer nearest the value of an expression.

sqrt (expr) returns the square root of an expression.

sin (expr) returns the sine of an angle.

Cos (expr) returns the cosine of an angle.

tan (expr) returns the tangent of an angle.

asin (expr) returns the angle having the given sine.

acos (expr) returns the angle having the given cosine.

atan (expr) returns the angle having the given tangent.

Y%arg (expr) returns the i-th argument of the currently executing procedure or foreign

directive body. Arguments are numbered from 1 to the number of arguments
(see the % nar gs function).

%bin (expr [, width])
returns a string containing expr formatted in binary; e.g., the number 23
would be returned as ‘*...00010111"". The optional field width argument con-
trols the number of digits in the returned value; if not specified, width
defaults to the number of bits in a long integer (usualy 32).

% chkgrp (group)
returns true if the tstol process is a member of the specified UNIX group.
group is case-sensitive and should be enclosed in string quotes if specified as
aliteral.

% chkprv (privilege)
returns true if the operator currently has the specified privilege. privilege is
case-sensitive and should be enclosed in string quotes if specified as a literal.

%dec (expr [, width])
returns a string containing expr formatted in decimal; e.g., the number 23
would be returned as ‘‘23'". The optiona field width argument controls the
number of digits in the returned value; if not specified, width defaults to the
number of decimal digits (plus a sign, if necessary) required to represent
expr. Unlike the binary, hexadecimal, and octal conversion functions, % dec
pads the field with leading blanks, not zeroes.

%default ([expr], [default])
returns expr if it's defined and default otherwise. The default expression is
not evaluated if the primary expression is defined. This function is intended
for specifying defaults for missing directive arguments.

%ds (...) is used to send commands to the data server. Since this %-function can be
entered as a stand-alone directive, it is documented in the section, Generic
TSTOL Commands.

Sun Release 4.1 Last change: 25 October 1993 13

TSTOL (9)

Sun Release 4.1

Y env (expr)

%eval (expr)

%float (expr)

MISC. REFERENCE MANUAL PAGES TSTOL (9)

returns the value of a UNIX environment variable. A zero-length string
(**"") is returned if the environment variable is not defined.

returns the value of expr, converted to a string and evaluated as if it had
been typed in. For example, given the string "COUNT+1", %eval would
look up the value of variable COUNT and add 1 to it. %eval is useful for
evaluating non-standard arguments in foreign directives (since, by definition,
non-standard arguments are not directly evaluated by the parser).

returns the value of expr, converted to a real number.

%fparse ([file spec [, default file spec [, related file spec]]] [, field])

parses and constructs file names. %fpar se expands file spec into a full path-
name. Missing components in the pathname are supplied by the default and
related file specifications or, if necessary, by system defaults. If field is not
specified, % fpar se returns the fully-expanded pathname. |If field is specified,
%fpar se extracts and returns the desired field from the fully-expanded path-
name. Valid fields are ‘“‘ALL’’, ‘‘DIRECTORY’’, ‘‘FILENAME'",
“EXTENSION", ““VERSION'’, ““FILEXTVER" (file name, extension, and
version combined), and ‘‘NODE’’. File specifications or field names should
be entered as strings in double quotes or as expressions that evaluate to
strings. A file specification for a UNIX directory must have a trailing **/"’;
otherwise, %fparse will treat the last component of the directory path as a
file name. When called without any arguments, ‘‘%fparse ()'’ returns your
current working directory.

%fsearch ([wildcard file spec [, default file spec [, related file spec]]])

% gmt

returns, on successive calls, the name of the next file matched by the wild-
card file specification; an empty string (**’") is returned when no more files
are matched. The default and related file specifications are used to fill in
missing components of the wildcard file specification (see %fparse).
%fsearch returns the fully-expanded pathname for each file matched. Under
UNIX, a sequence of calls to %fsearch with the same wildcard file
specification can only scan a single directory; putting wildcard characters in
a directory name will not effect a multiple-directory scan. Invoking the
search function without any arguments (‘‘%fsearch ()’’) terminates the
current directory scan.

returns the current GMT as a date/time constant.

%hex (expr [, width])

%ident (expr)

%int (expr)

%isint (expr)

%isnum (expr)

returns a string containing expr formatted in hexadecimal; e.g., the number
23 would be returned as ‘*00000017"’. The optional field width argument
controls the number of digits in the returned value; if not specified, width
defaults to the number of hexadecimal digits required to represent a long
integer (usually 8).

instructs the TSTOL parser to treat the string value of expr as a keyword.
This ‘‘function”’ only works in certain places, so its use is currently
discouraged. Directives can be constructed ‘‘on-the-fly’” just as easily with
the parse directive.

returns the value of expr, converted to an integer. The fractional portion of
expr is truncated, not rounded.

returns true if expr can be interpreted as an integer and false otherwise.
Integers are integers, of course, as are floating point numbers which have no
fractional part. Strings can also be interpreted as integers if they follow the
standard C conventions (see strtol(3)) for decimal, octal, and hexadecimal
congtants. N, ON, and OxN, respectively.

returns true if expr can be interpreted as a number (integer or floating point)
and false otherwise. (Also see the %isint and %isreal functions.)

Last change: 25 October 1993 14

TSTOL (9)

Sun Release 4.1

MISC. REFERENCE MANUAL PAGES TSTOL (9)

%isreal (expr) returns true if expr can be interpreted as a real number and false otherwise.
Floating point numbers and integers are considered real. Strings can be
interpreted as reals if they follow the standard C conventions (see strtod(3))
for floating point numbers; e.g., 1, 2.3, 4.56E-78, etc.

%lex (target, regexp [, retvalO [, retvall [, ...]1] [, remainder])
dissects a target string using the given regular expression. %lex supports the
full functionality of regcmp(3), including M-to-N closure (*‘RE{[m][,[n]]}"")
and subexpression assignment (‘‘(RE)$n’’); in addition, lex(1)-style alterna-
tion ("‘REL1| RE2'") is supported. If the regular expression match is success-
ful, designated subexpressions are stored in the corresponding retvalN vari-
ables (for N = 0..9) and %lex returns true. If the match is unsuccessful,
zero-length gtrings are assigned to the return variables and %lex returns
false. In either case, remainder returns the text following the text matched
by the regular expression. (See the subsection, Regular Expressions, for
more information.)

%liv (keyword) looks like a %-function, but it's really a reference to an internal variable; see
the earlier section, Local Internal Variables.

%lower (expr) returns the value of expr as a string, with al alphabetic characters converted
to lower case.

% match (target, expr [, expr ...])
matches the target string against a list of expressions. Matches are case-
insensitive; both the target string and the match strings are converted to
upper case before a match is attempted. Use %rex if aphabetic case is
important. A string in the list of expressions can specify a fixed-length
abbreviation by embedding a *‘#"’ in the string; e.g., “*SIM#NT"" will match
simint and its short form, sim. Variable-length abbreviations are denoted by
a ‘00’ embedded in the match string; e.g., “‘INITOALIZE’ matches init,
initi, ..., initialize. %match returns the index 1..N (al true values in
TSTOL) of the matching string in the list of expressions; 0 (false in TSTOL)
is returned if no match was found.

% nargs returns the actual number of arguments passed to the currently executing pro-
cedure or foreign directive body.
%net (...) is used for establishing and communicating across network connections.

Since this %-function can be entered as a stand-alone directive, it is docu-
mented in the section, Generic TSTOL Commands.

% nwords (exp) returns the total number of ‘‘words’ in a string, including null words. (See
the % word function.)

%oct (expr [, width])
returns a string containing expr formatted in octal; e.g., the number 23 would
be returned as ‘*00000000027''. The optional field width argument controls
the number of digits in the returned value; if not specified, width defaults to
the number of octal digits required to represent a long integer (usually 11).

%pick (index, expr [, expr ...])
returns the i-th expression from a list of expressons. When used in conjunc-
tion with % match or %rex, % pick provides an easy way to convert abbre-
viations to fixed keywords.

%real (expr [, format])
returns a string containing expr formatted as a real number; e.g., the number
2.345E-4 would be returned as ‘*0.0002345'". The optional format argument
can be any standard C format string for floating point numbers; the default
format is ‘‘%G'’, which lets the system choose an appropriate format, with
or without an exponent, depending on the value of expr.

% replace (target, regexp, replacement text [, max substitutions])

Last change: 25 October 1993 15

TSTOL (9)

Sun Release 4.1

MISC. REFERENCE MANUAL PAGES TSTOL (9)

returns a copy of the target string, with text matched by a regular expression
(regexp) replaced by replacement text. Up to max substitutions are applied
to the target string; if max substitutions is not specified, all occurrences of
text matched by regexp are replaced (global substitution). The text matched
by regexp can be manipulated to some extent using special character
sequences ($n, $&, etc.) embedded in the replacement text; see the section
on regular expressions for more information. To prevent $-character
sequences from producing unwanted text substitution (if enabled), you may
need to split replacement text into several strings connected by the & string
concatenation operator. (Very awkward!) Substitutions are not recursive;
the search for the next regexp match begins following the last substitution.
(See the subsection, Regular Expressions, for more information.)

%rest (expr, index)

returns the rest of a string, beginning with the i-th “‘word’’ in the string;
words are delimited by blanks, commas, or tabs. Using the same scanning
mechanism as %word, %rest skips arguments 1 through i-1 of expr and
then returns the rest of expr (i.e., arguments i through N). A zero-length
string (“*'") is returned if index exceeds the number of words in the string
(see the %nwords function). %rest is useful for scanning non-standard
arguments.

% rex (target, regexp [, regexp ...])

matches the target string against a list of regular expressions. The matches
are case-sensitive — target is not converted to upper case before the match is
attempted. If a regular expression must match the entire target string, be
sure to include the **”’ and ‘‘$'’ anchors at the beginning and end, respec-
tively, of the regular expression. %rex returns the index 1.N (al true
values in TSTOL) of the matching string in the list of regular expressions; 0
(false in TSTOL) is returned if no match was found. (See the subsection,
Regular Expressions, for more information.)

% search (target, regexp [, regexp ...])

%shell (..

% sour ce (type)

returns a string containing the text matched by a regular expresssion in a tar-
get string. More than one regular expression may be specified; the first regu-
lar expression that produces a match terminates the search. A zero-length
string (**"’) is returned if none of the regular expressions is matched in the
target string. The matches are case-sensitive — target is not converted to
upper case before a match is attempted. (See the subsection, Regular
Expressions, for more information.)

is used to execute commands in the host operating system’s shell. Since this
%-function can be entered as a stand-alone directive, it is documented in the
section, Generic TSTOL Commands.

returns the source of the current directive, where type is CONTEXT, LINE,
or INTERACTIVE; the latter is probably the most useful. A new lexical
context is pushed on the lexical stack whenever a foreign directive is exe-
cuted or a procedure is started; the lexical context is popped from the stack
when the directive or procedure completes. %source (CONTEXT) returns
the source of the current lexical context; i.e., the keyword for a foreign
directive and the file name for a TSTOL procedure. A context source is
fixed throughout the lifetime of its lexical context. Because TSTOL has
multiple input sources, a directive may be received from a source other than
the current lexical context’'s source. The dynamic source of the current
directive is returned by %source (LINE). For example, if aline of input is
read from a network source during the execution of a TSTOL procedure, the
context source will be the procedure and the line source will be the logical

Last change: 25 October 1993 16

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

name of the network source. If the network input is itself a foreign direc-
tive, a new lexical context for the directive is pushed on the lexical stack;
the new context source and line source will then be the foreign directive's
keyword. The original source of the executing directive has not been logt,
however. %source (INTERACTIVE) scans the lexica stack to determine
the “‘interactive’”’ source of the current directive; i.e., the source of the net-
work or operator input that resulted in the execution of the current directive.
For example, the interactive source of a foreign directive executing within a
procedure started by the operator is the operator; % source scans past the
foreign directive's lexical context and the procedure’s lexical context until it
encounters the interative source, the operator's lexical context. A zero-
length string (") is returned if the requested source type is the operator.

% status looks like a %-function, but it's really a reference to TSTOL's global status
variable, % status; see the earlier section, TSTOL Variables.

%time (expr) returns the value of expr, converted to a date/time constant. If expr is a
string in the format of a date/time constant, the string is converted to that
date/time constant (useful when parsing non-standard directive arguments).
Otherwise, expr is treated as the number of seconds since January 1, 1970
and is converted to the equivalent date/time constant.

%upper (expr) returns the value of expr as a string, with al alphabetic characters converted
to upper case.

% word (expr, index)
returns the i-th “‘word’”’ from a string, where words are delimited by blanks,
commas, or tabs. Null words in a string can be specified with consecutive
commas (with intervening white space allowed). A zero-length string (**'")
is returned if index specifies a null word or if it exceeds the number of words
in the string (see the % nwords function). %word is useful for scanning
non-standard arguments.

Procedure Definition and Control

Automatic sequencing and execution of directives is possible using TSTOL procedure files. Once a
sequence of directives is stored in a procedure file, the procedure can be called up at a later time and
the directives will be automatically executed, one after another.

TSTOL procedures files are normal UNIX text files that can be created and modified using the standard
system text editors. Full- and in-line comments, form feeds, and blank lines can be used to document
procedures and improve their readability.

A procedure definition has the following form:

proc name (formal parameters)
... body of procedure ...
endproc

name is the name assigned to the procedure. The formal parameters are place holders for the argu-
ments being passed into the procedure. The specification of forma parameters can take one of two
forms. The traditional STOL approach specifies the number of arguments that will be passed into the
procedure. In the body of the procedure, the arguments are referenced by number: $1, $2, ..., $N (see
Text Substitution in the next section). For example:

proc ADD_NUMBERS (2)

X1=8%1+$2
write"Sum =", X1
endproc

Sun Release 4.1 Last change: 25 October 1993 17

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

TSTOL aso supports named procedure parameters. Arguments are then referenced by the correspond-
ing names in the formal parameter list. As an example:

proc ADD NUMBERS (FIRST, SECOND)
X1 = FIRST + SECOND
write"Sum =", X1

endproc

When a start directive is executed, the file containing the procedure is loaded into memory; the
memory is deallocated when the procedure returns. There are no limits on the size of a procedure file,
as long as the parser doesn’t run out of memory — a remote possibility thanks to virtual memory.

When a procedure is invoked, each line in the body of the procedure is echoed on the operator’s screen
and then executed. Various control flow directives (e.g., goto, return, killproc, etc.) are available to
alter the sequential execution of statements. These directives can appear in the procedure itself or may
be manually entered by the operator as the procedure executes.

The execution of a procedure continues until: (i) a return directive is executed, (ii) the endproc direc-
tive terminates the procedure, or (iii) the operator aborts the procedure (see the killproc directive).

In the event of a syntax error or a processing error, tstol displays an informative error message on the
operator’s screen and halts procedure execution in an unconditional wait state. The operator can then
enter zero or more directives to correct the error, followed by a go or goto directive to exit the wait
state and continue execution. (Another option, of course, isto just kill the procedure.)

The following list summarizes the TSTOL directives that affect procedure control flow:

ask prompts the operator for input and waits until something is entered.
break breaks out of the current do loop.

continue continues with the next iteration of the current do loop.

do-enddo repeatedly executes a block of statements — an unconditional do loop.

for-do-enddo
executes a block of statements a certain number of times — a counted do loop.
go causes a procedure to exit wait mode and continue execution.
goto unconditionally shifts execution to the specified line number or label.
if provides for the conditional execution of a single directive.

if-then-el seif-else-endif
provides for the conditional execution of blocks of statements.

killporoc aborts the currently active procedure, as if a return directive was executed.

position causes procedure execution to branch to a specified line number or label and to
enter an unconditional wait state, pending operator input.

return exits the currently active procedure and returns control to the next higher level pro-
cedure.

start starts a procedure up and passes it the specified arguments.

step allows the operator to control the rate of procedure execution. If timed step mode

is selected, the parser pauses for the specified amount of time between each state-
ment executed. |f manual step mode is selected, the parser pauses after each state-
ment executed; the operator must enter go before execution can continue with the
next directive in sequence.

wait suspends procedure execution. There are four types of wait states: unconditional
(wait for operator direction), conditional (wait until an expression evaluates to

Sun Release 4.1 Last change: 25 October 1993 18

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

true), delta timed (wait for a certain amount of time), and absolute timed (wait
until the specified GMT is reached).

while-do-enddo
executes a block of statements as long as an expression evaluates to true — a con-
ditional do loop.

Since TSTOL is a block-structured language, there are restrictions on the destinations of goto, position,
and start-at directives. A block is a group of consecutive TSTOL directives, bracketed by certain
language constructs. TSTOL blocks include if-then blocks, elseif blocks, else blocks, and do loops.
Performing a goto from outside of a block into the middle of a do loop, for instance, is generally mean-
ingless. Consequently, TSTOL prohibits such transfers of control, as the following example shows:

goto Label 2 ; Hllegal jump.

if (exprl) then

.. block 1 ...

goto Label 5 ; Legal jump.
elseif (expr2) then

Label 2:

... block 2 ...
else

... block 3 ...

goto Label 4 ; Hllegal jump.
endif

for | =1toN do
Label 4:
... block 4 ...
enddo

Label 5:

Argument Passing M echanisms

In MAE and most earlier STOLS, there was only one means of passing arguments to procedures. text
substitution. In text substitution, the text of an argument string is substituted in the procedure text
wherever the argument is referenced (via *‘$1'", **$2'", etc.) This substitution occurs before the aff ected
directive is parsed. Text substitution is essentially macro expansion, a form of call-by-name argument
passing.

TSTOL supports a more general form of text substitution, applicable to any variable (procedure-local or
procedure-global), not just procedure arguments. Text substitution is initiated using the “‘$n’’ or
““$variable’’ constructs; parentheses can be used to separate n or variable from surrounding text. For
example, the following code executes the killproc all directive:

let COMMAND OF THE DAY = "killproc all"
$COMMAND OF THE DAY ; Text substitution.

Text substitution can be turned on and off by setting or resetting the local interna variable,
%liv(text_substitution). Text substitution is initially enabled when TSTOL comes up. When a pro-
cedure starts up, text substitution is automatically enabled; the procedure can explicitly disable text sub-
gtitution if need be. When a foreign directive is invoked, text substitution is automatically disabled; if
necessary, text substitution can be explicitly enabled in the directive’s definition. The current text sub-
gtitution mode is saved and restored as procedures or directives are called and return. If procedure A

Sun Release 4.1 Last change: 25 October 1993 19

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

disables text substitution and then calls procedure B, text substitution is automatically enabled in B and
disabled when B returns to A. Foreign directives manipulate the substitution mode in a similar fashion.

Text substitution is applied to an input line before the line is passed to the parser’s lexical analyzer.
Consequently, substitutions are performed without regard to the presence of string delimiters or non-
standard argument designations. If invoked by ‘‘start BROKE ("an elephant")’’, the following pro-
cedure:

proc BROKE (1)
write "l have $1 in my pocket!"
endproc

will display ‘‘I have an elephant in my pocket!’’, probably not what was intended. A different formula-
tion of the write directive, that avoids text substitution, would be:

write "l have $" & "1 in my pocket!"

As the command-of-the-day example illustrates, the syntax of a TSTOL statement involving text substi-
tution cannot be determined until the text substitution actually takes place. Compiling TSTOL pro-
cedures into a fast-executing, intermediate form (a future possibility) would be hampered by the use of
text substitution. Consequently, its use in procedures is discouraged. The advantages of text substitu-
tion can ill be achieved in other ways in TSTOL. The % arg(number) function provides the ability to
reference arguments by number. The parse directive allows the construction and execution of an arbi-
trary directive. The following procedure emulates the example code above:

proc EXECUTE COD (COMMAND OF THE DAY)
parse %arg(l) ; Equivalent to COMMAND OF THE DAY)
endproc

In addition to text substitution, TSTOL also supports call-by-value and call-by-reference mechanisms
for passing arguments to procedures. If an argument is passed by value (the default mode), TSTOL
makes a copy of the argument’s value; the called procedure is free to manipulate the argument as it
pleases. If an argument is passed by reference (smilar to FORTRAN-style argument passing), the
address of the argument is passed to the called procedure. Any changes to the argument in the called
procedure are reflected back outside of the called procedure. Call-by-reference arguments thus provide
a means of returning values from procedures.

How are arguments specified in a start directive? Since TSTOL is primarily a command language, not
a programming language, a simple identifier in an argument list is interpreted as a text string, not a
variable name. To treat the identifier as a variable reference, enclose it in parentheses or explicitly
request call-by-value or call-by-reference argument passing:

start XYZ (ABC, arg2, ...)
passes the text string ‘*ABC’’ to procedure XY Z.

start XYZ ((ABC), arg2, ...)
looks up the value of variable ABC and passes that value to procedure XY Z.
start XYZ (%val (ABC), arg2, ...)
passes the value of variable ABC to procedure XY Z.
start XYZ (%ref (ABC), arg2, ...)
passes the address of variable ABC to procedure XYZ. An assignment (via a let direc-

tive, for instance) to the corresponding formal parameter in procedure XYZ will store a
new value in variable ABC.

Numerical and string expressions can be specified as arguments without surrounding parentheses, but
avoid statements such as ‘‘start XYZ (ABC+2, ...)"" — the parser tries to add 2 to the string **ABC’’!

Sun Release 4.1 Last change: 25 October 1993 20

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

If the number of actual arguments M in a start directive is less than the number of formal parameters N
specified in the proc declaration, the missing parameters (M+1 to N) are treated as null arguments. If
the number of arguments exceeds the number of expected parameters (M>N), the extra arguments are
retained and can be referenced within the procedure using the % ar g(number) function.

Foreign Directives

tstol is a programmable parser that provides the user with the ability to define new directives at run-
time using ‘‘internal’’ procedures. With this approach, similar to that used in extensible text editors
(UNIX Emacs, VMS TPU, and assorted MS-DOS editors), a directive is defined in terms of other
TSTOL directives. *‘Foreign’’ directive definitions are structured as follows:

directive name (formal parameters) is
... directive attributes ...
begin
... body of directive definition ...
end

name specifies the directive keyword and can incorporate abbreviated short forms. Directive arguments
can be specified using the argument count (MAE STOL-style) or by listing the named arguments
(TSTOL-style). Directive attributes include keyword aliases (short forms), operations classes, if the
directive is built-in (generic TSTOL?), and if the directive arguments should be interpreted (non-
standard arguments?). The body of the directive definition specifies the procedural implementation of
the directive and is not required for built-in directives. Any TSTOL directive is alowed in the body of
the procedure, including do loops, procedure calls, and foreign commands. For example, the ICE/IMP
orbit directive is defined as follows:

directive 'ORB#T' (ORBIT NUMBER) is
class CC
begin
ORBIT NUMBER = %int (ORBIT NUMBER)
if (ORBIT NUMBER < 1) or (ORBIT _NUMBER > 99999)) then
write "Enter an orbit number between 1 and 99999."
else
transact STATE MANAGER "[XQ] ORBIT ", ORBIT NUMBER
endif
end

The “‘#" in the keyword indicates a fixed-length abbreviation (orb is an abbreviation of orbit); ‘0’
can be used for variable-length abbreviations. Within the directive body, the orbit number is range-
checked and an ORBIT command is forwarded to the State Manager subsystem.

tstol reads the directive definitions (from the server initialization file, for instance) and stores the inter-
nal procedures in memory for fast access. When the operator enters a ‘‘foreign’’ keyword, the parser
collects up the remaining arguments on the command line and passes them to the internal procedure
defined for the keyword. The effect is the same as if the foreign directive were defined as a procedure
in a TSTOL procedure file and the operator entered a start directive. Text substitution is automatically
disabled when a foreign directive is invoked; it can be explicitly enabled within the body of the direc-
tive by setting local internal variable, %liv(text_substitution).

The arguments to some directives cannot be parsed correctly by tstol. For example, the parser has trou-
ble with ICE/IMP's *‘simint init E-SCI’’ directive; ‘**E-SCI’’ looks too much like an arithmetic expres-
sion. Directives such as this are marked as not standard in the directive definition. When the operator
enters the keyword for a non-standard directive, the parser simply reads the rest of the command line
into a string and passes it as a single argument to the keyword's internal procedure. The directive

Sun Release 4.1 Last change: 25 October 1993 21

TSTOL (9)

MISC. REFERENCE MANUAL PAGES

definition (somewhat abbreviated) for simint looks as follows:

directive 'SIM#INT" (REST_OF LINE) is

class CC
not standard

local ACTION, FMT

ACTION = %word (REST _OF LINE, 1)
ACTION = %pick (Yomatch (ACTION, "INITOALIZE", "CHANGE", ;;
"CHG", "TERMONATE"), ;;
"INIT", "CHG", "CHG", "TERM")

if (ACTION ="") then

... invalid action ...
elseif (ACTION = "INIT") then

let FMT = %upper (%oword (REST OF LINE, 2))

if (%lex (FMT, ""[E-J-(SCI | ENG| VA[A-D])$")) then

transact STATE_ MANAGER "[XQ] SIMINT INIT ", FMT

else
... invalid format ...
endif
else
... other actions ...
endif

TSTOL (9)

%word is a built-in function that returns the i-th ‘“*“word’’ from a string (the remainder of the command
ling, in this case), where words are delimited by blanks or commas. The % pick-% match expression
validates the action keyword. Regular expressions provide a more concise way of matching the 30 pos-
sible telemetry formats, so a %lex expression is used to validate the telemetry format.

The ubiquitous ‘‘shoval value format’’ directive illustrates the use of some other built-in functions to
process non-standard arguments:

Sun Release 4.1

directive SHOVAL (REST OF LINE) is

not standard
local FMT, VALUE

VALUE = %word (REST _OF LINE, 1)
FMT = %upper (%word (REST OF LINE, 2))
if (FMT ="B") then

write "Vaue = B'", %bin (%eval (VALUE)), "'"
elseif (FMT ="E") then

write "Vaue =", %real (%eval (VALUE), "%E")
elseif (FMT ="H") then

write "Vaue = H'", %hex (%eval (VALUE)), ™"
elseif (FMT ="I") then

write "Value =", %dec (%oeval (VALUE))
elseif (FMT ="Q") then

write "Vaue = O'", %oct (oeval (VALUE)), "'
elseif (FMT ="R") then

write "Vaue =", %real (Y%oeval (VALUE), "%f")
elseif (FMT ="") then

Last change: 25 October 1993

22

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

write "Vaue =", %eval (VALUE) ; Strings, etc.
else

write "Invalid SHOVAL format: ", FMT

error "Valid formats are B, E, H, I, O, R, or none."
endif

end

%eval evaluates the contents of a string as if they had been typed directly into the parser. For exam-
ple, “‘shoval 2112 passes the string ‘21112 to shoval; %evaling the string produces the number
4096, which is then displayed. (Note that %word doesn't allow embedded blanks or commas in
value) %bin, %dec, % hex, %oct, and %real convert the number to the desired output format.

tstol attempts to make the invocation and execution of a foreign directive indistinguishable from the
invocation and execution of a hypothetical, built-in directive that performs the same function. Doing so
has introduced some subtleties into the process of resolving variable references, subtleties that affect
foreign directives which pass non-standard arguments to the parse directive or the %eval function.
Imagine a procedure called LOOP that smply displays an incrementing counter:

proc LOOP (N)
local COUNTER
for COUNTER =1to N do
shoval COUNTER
enddo
endproc

When the LOOP procedure is run, a new block containing LOOP's local variables is pushed on the
symbol table stack; when LOOP returns, its block of local symbols is popped from the stack. When the
shoval directive is executed, the string ‘**COUNTER’’ is passed as a non-standard argument to the body
of shoval. In earlier versions of tstol, a new local symbol block was created for foreign directives.
%evaling ‘‘COUNTER'’ then produced a symbol not found error, since COUNTER would not be found
in the current (shoval) block of local symbols or in the global symbols.

Later releases of tstol corrected this problem by implementing local symbol subblocks. When a TSTOL
procedure is run, a local symbol block is pushed on the symbol table stack. A local symbol block itself
is a stack of local symbol subblocks. The base subblock contains the procedure’s local symbols. When
a foreign directive is invoked, a subblock for the directive's local symbols is pushed on the subblock
stack of the current local symbol block; when a foreign directive completes, its subblock is popped
from the stack. A picture is worth a thousand words (the symbol stack is growing down towards the
bottom of the page):

MISSION <-- global symbol block

Y%ostatus

N <-- LOOP’s local symbol block (and base subblock)
COUNTER

REST OF LINE <-- shoval’s local symbol subblock

FMT

VALUE

When no procedure is active, the global symbol block functions as the current, ‘‘local’” symbol block.
Foreign directive subblocks are pushed and popped as needed, but the base subblock containing the glo-
bal symbols is never popped from the symbol table stack.

Subblocks are considered part of the current local symbol block as far as the symbol resolution process
is concerned. The search for a symbol in alocal symbol block begins at the top of the subblock stack
and descends through parent subblocks (if any) down to the base subblock. %eval (COUNTER) in
shoval now returns the value of LOOP's variable. If shoval aso declared a local variable called

Sun Release 4.1 Last change: 25 October 1993 23

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

COUNTER, then its declaration would hide, within the body of shoval, LOOP's COUNTER variable.

Normally, the details of symbol table subblocks are of no concern. Foreign directives that make use of
parse or %eval, however, should be aware of the implications of evaluating a string containing a vari-
able name: the variable might have been declared local to the directive, local to a parent foreign direc-
tive, local to the base subblock’s procedure, or global. Of particular concern are nested foreign direc-
tives, since a symbol table search will scan each of the nested subblocks. To guard against problems,
declare all local variables and use unique names. For example, ‘‘shoval FMT’’ and ‘‘shoval VALUE"
will probably display meaningless numbers, given the definition of shoval above (FMT and VALUE are
local to shovall!).

Watchpoints

Watchpoints provide a means of monitoring the values of system variables (e.g., telemetry mnemonics).
Multiple watchpoints can be set up and simultaneoudly active. A requested value can be sampled every
N seconds (asynchronous sampling) or when the value is decommutated (synchronous sampling).
Whenever a value is received, a user-defined foreign directive procedure is invoked and passed the
value of the system variable. Once activated, a watchpoint effectively executes in ‘‘background’’
mode; the operator can go on and enter other TSTOL directives, run procedures, etc. (Currently,
watchpoints cannot ‘‘make themselves heard’’ if TSTOL is stopped because of a syntax error.)

Watchpoints are defined and activated by the watch directive. The watch directive can be entered with
or without a body:

watch variable [sampling type [rate]] is
begin

... watch body ...
end

watch variable [sampling type [rate]]

The sampling type is asynchronous (the default) or synchronous. The watch body defines and is
stored as a temporary, foreign directive (called a watchpoint directive) that will be executed whenever a
value is received for the specified system variable. If no watch body is defined in the watch directive,
a default watchpoint directive is substituted that just displays the variable’s value on the operator’'s
screen.

After storing the foreign directive, the TSTOL parser requests a stream of values for the system variable
from the data server. If an asynchronous data stream is requested, the data server will sample and
send the system variable’s value every rate seconds. If a synchronous data stream is requested, the
data server sends every rate-th occurrence of a system variable's value; the data stream is synchronous
with respect to when the values are generated (e.g., when they are decommutated). Synchronous data
streams are serviced by mission-specific applications, not the data server, so this mode is not necessarily
supported for all system variables.

When a system variable's value is received, the watchpoint’s foreign directive is invoked with a single
argument, the variable's value encoded in ASCIl. Watchpoint directives for telemetry points (data type:
CVT type) will receive a string containing several values: the raw value, the EU or processed value (if
applicable), and the status flags (use %oword to access the individual values). If the ‘‘P@'' modifier is
specified in the watch directive, the EU-converted value or the trandated state name, whichever is
applicable, is passed to the watchpoint’s directive.

The foreign directive temporarily defined for a watchpoint is marked as non-standard; i.e., the rest of
the command line following the keyword is packaged as a single string and passed to the directive.
Specifying directive attributes in the watchpoint definition seems to serve no useful purpose.

Sun Release 4.1 Last change: 25 October 1993 24

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

A “‘watch MNF COUNT"" directive would simply display the satellite’s MNF counter every 5 seconds.
The following, more complex example monitors the setting (ON or OFF) of the master switch in the
satellite’s power subsystem:

watch P@MASTER SWITCH#POWER@orion synchronous is
begin
if (Yoarg (1) = "OFF") then
write "Who turned out the lights?"
endif
end

The show watch directive displays a list of active watchpoints on the operator's screen. The stop
watch directive cancels an active watchpoint:

stop watch watchpoint

watchpoint is the index (1..N) in the active watchpoints list of the watchpoint to be cancelled. The fol-
lowing example illustrates the normal procedure for stopping a watchpoint:

show watch ; Display list of active watchpoints.
stop watch 2 ; Cancel #2 on the ligt.

Operations Privileges

TSTOL execution privileges limit the set of directives available to an operator. For example, an opera-
tor must typically have Command Controller privilege (‘*‘CC'") in order to issue spacecraft commands.
The privileges required to execute a directive are specified by the ''class privilege(s)'’ clause in the
foreign directive definition for the directive. For example, /cmd is defined as follows:

directive '/CMD’ (REST OF LINE) is
class CC ; Must be Command Controller
not standard

begin
end

At first, the operator has no privileges, he or she can only execute those directives which have no
privileges defined for them. Execution privileges can be changed and examined using the following
directives:
access add privilege [, privilege ...]
attempts to add the requested privileges to the operator’s current privileges.

access delete privilege [, privilege ...]
deletes the specified privileges from the operator’s current privileges.

shoacc [keyword]
displays the operator’s current privileges. If a keyword is given, shoacc displays the
privileges needed to execute that directive.

Prior to executing a directive, TSTOL checks the privileges assigned to the directive’s keyword against
the operator’s current privileges. If the operator has at least one of the keyword's privileges (or if no
privileges are required), the directive is executed. Otherwise, an error message is displayed on the
operator’s screen; if a procedure was active, the procedure is halted.

Although privileges can be assigned to built-in directives, TSTOL currently checks privileges on foreign
directives only. At thistime, it doesn’'t appear that privileges are needed for the built-in directives.

Sun Release 4.1 Last change: 25 October 1993 25

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

Because of the way execution privileges are implemented (described below), TSTOL doesn’'t know or
care what operations classes are defined for a mission. TSTOL doesn’t mind that ICE/IMP only has 2
classes (CC and FC) while GRO has 9 (MC, CC, PROC, FC, AN, EXR, EXL, OP, or DOCS).

How does TSTOL know that some untrustworthy operator can’t become Master Controller (**‘MC'’) and
take over the world? Well, TSTOL doesn’t know. The access add directive internally calls a foreign
directive, ** ACCESS’, and passes it the list of requested privileges (minus any that the operator
already has).

__access is a mission-supplied foreign directive that is responsible for determining if the operator can
have the requested privileges. In a typical TPOCC-based system that includes TSTOL, display, and
state manager subsystems, the access directive must communicate with Display and State Manager
to verify the operator’'s new privileges. The following definition of the access directive does just
that:

directive ACCESS (REST OF LINE) is
not standard

begin
local ACTION, PRIVILEGES

% status = false
ACTION = %word (REST _OF LINE, 1)
PRIVILEGES = %rest (REST OF LINE, 2)
if (Y%omatch (ACTION, "ADD")) then

transact OPIO "[XQ] ACCESS ADD ", PRIVILEGES

if (Yostatus) transact STATE MANAGER ;;

"[XQ] ACCESS ADD ", PRIVILEGES

elseif (Y%omatch (ACTION, "DEL#ETE")) then

transact STATE MANAGER "[XQ] ACCESS DEL ", PRIVILEGES
else

write "Invalid action, ", ACTION, ", passed to ACCESS directive."
endif

end

If the operator already had Flight Controller (*'FC'’) privilege, an ‘‘access add MC, CC'’ directive
would result in the following exchange of messages:

TSTOL ----> "[XQ] ACCESS ADD MC, CC" ---> Display

TSTOL <---- "[ST] 0" <---- Display
TSTOL ----> "[XQ] ACCESS ADD MC, CC" ----> Sate Manager
TSTOL <---- "[ST] O" <---- Sate Manager
TSTOL ----> "[CL] FC, MC, CC" ----> Display

If a bad status message (non-zero status code) is received from either Display or State Manager, the
access add directive fails and none of the requested privileges are granted. The *‘[CL]"’ message is
generated internally by the TSTOL parser, not by the access foreign directive. It lets the display
subsystem know what the operator’s current privileges are.

If _ access is not defined, then TSTOL will automatically check if the operator is a member of the
UNIX groups corresponding to the requested privileges. Actually, TSTOL checks if the person who
started up the TSTOL program is a member of the specified groups. That person may or may not be
the operator. After the privileges are verified, a *‘[CL]"’" message is output to the display subsystem.

The access delete directive deletes the specified privileges from the operator’s current privileges, calls
the ~ access foreign directive, and then writes a *‘[CL]" message to Display. When deleting
privileges, the _access code should send an **ACCESS DEL’’ message to the state manager:

TSTOL ----> "[XQ] ACCESS DEL CC" --> Sate Manager

Sun Release 4.1 Last change: 25 October 1993 26

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

TSTOL <---- "[ST] 0" <---- Sate Manager
TSTOL ----> "[CL] FC, MC" ----> Display

The display subsystem must handle two types of message, the ‘*ACCESS ADD’ command and the
““[CL]" screen update. The state manager must handle both the ** ACCESS ADD privilege(s)’”’ mes-
sage and the ‘*ACCESS DEL privilege(s)’’ message. In both cases, an “‘[ST]"’ status message is
expected in return. The bad ADD status message will abort the original access directive. A bad DEL
status message is too late to do any good!

Regular Expressions

Regular expressions are a means of specifying text patterns. Built-in TSTOL functions %rex and %lex
provide foreign directive and TSTOL procedure programmers with a means of applying regular expres-
sions to arbitrary strings (e.g., directive arguments or operator input). %rex alows you to verify that a
text string matches a given pattern. %]lex not only lets you verify that a string matches a pattern, it
also lets you extract fields from within the string based on the pattern.

The following components of regular expressions are supported by TSTOL :

c matches one instance of the specified character. For example, regular expression ‘‘abc’’
matches the string abc. To match a special character, such as ‘‘."" or *‘$"’, escape it
with a forward dash: “‘\c"’.

matches one instance of any character. For example, regular expression ‘‘a.c’’ matches
the text strings aac, abc, acc, etc.

at the beginning of a regular expression, anchors the left edge of the match at the begin-
ning of the target string. If a regular expression is not anchored, %rex and %lex will
scan the entire text string looking for a match. For example, regular expression ‘‘abc’’
would match both abc and xyzabc. Anchored regular expression ‘*“abc’’, on the other
hand, will only match abc, not xyzabc.

$ at the end of a regular expression, anchors the right edge of the match to the end of the
target string. For example, regular expression ‘‘abc$’’ matches abc and xyzabc, but not
abcxyz. A regular expression anchored at both ends (‘“"...$') must consume the entire
target string in order for the match to succeed.

[characters]
matches one instance of a character in the specified set of characters. Character sets can
be specified literaly (e.g., ‘‘[abc]’’ matches a, b, or ¢) or as a range of characters (e.g.,
“‘[A-Za-z0-9]'" matches any upper case letter, lower case letter, or digit.

["characters]
matches one instance of a character not in the specified set of characters.

[:class]
matches one instance of any character that belongs to the specified class of characters.
The possible classes are alpha, upper, lower, digit, xdigit, alnum, space, punct, print,
cntrl, and graph. Class names are not case-sensitive. Although the meanings of some
of the classes are obvious, check the UNIX documentation for ctype(3) before using this
regular expression construct.

[":class]
matches one instance of any character that does not belong to the specified class of char-
acters.

RHEII matches zero or more instances of regular expression RE. For example, ‘‘alb’’ matches
b, ab, aab, aaab, etc.

RE+ matches one or more instances of regular expression RE. For example, ‘‘at+b’” matches

Sun Release 4.1 Last change: 25 October 1993 27

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

ab, aab, aaab, etc.

RE? matches zero or one instance of regular expression RE. For example, ‘‘a?b’’ matches b
and ab only.

RE{[mI[.[n]]}
matches m through n instances of regular expression RE. If not specified, m defaults to 0
and n defaults to m (“"RE{m}’’) or to a very large number ("‘RE{m}’’). “‘REO’ is
equivalent to “‘RE{0,}’’. ""RE+’ is equivalent to ‘‘RE{1,}’’. '‘RE?’ is equivalent to
“RE{0,1}"".

(RE) matches regular expression RE. The parentheses allow you to group regular expressions.
For example, regular expression ‘‘(ab)Ctd' ' matches cd, abed, ababcd, etc.

(RE)$Nn
matches regular expression RE and assigns the text matched by RE to the nth variable
(where n is a single digit in the range 0 through 9). This capability is only available in
the %lex function; when used in a call to %rex, ‘‘(RE)$n"’ is equivalent to ‘‘(RE)".
For example, if regular expression ‘*((ab)D$0(cd)$1’ matches ababced in a call to %lex,
then abab is stored in retval0 and cd in retval 1.

RE1 RE2
matches regular expression RE1 followed immediately by regular expression RE2; there
should be no intervening spaces in the composite regular expression or in the target
string. For example, regular expression ‘‘alb’’ is the concatenation of regular expres-
sions “‘al]’ and “‘b’".

RE1| RE2
matches either RE1 or RE2. For example, regular expression ‘*((abc)|(def))ghi’’ matches
abcghi and defghi.

Regular expressions add powerful lexical analysis capabilities to foreign directives and TSTOL pro-
cedures, capabilities that do not need to be hard-coded into the underlying tstol program. The follow-
ing regular expression, for instance, recognizes ICE serial magnitude spacecraft commands of the form
“'mnemonic/X:77.777.777.777.777", where X is command decoder A or B:

[:alnum:]+-7:alnum:][ABJ:[0-7){ 2} (\ .[0-7]{3}){4}

(Example ICE command mnemonics include ‘137", ‘*ANXMEM’’, and ‘‘BAM-ION’’; hence, the dou-
ble alphanumeric pattern for the mnemonic.) Another example is the directive from the origina ICE
POCC that is used for changing values in a simulated, telemetry data stream:

simint chg=sxxxyyyzzz-n,nv/value

where xxx is the word location, yyy is the minor frame, zzz is the major frame, n is the start bit, mis
the stop bit, and value is the value to be inserted in the data stream. simint is defined as a foreign
directive with non-standard arguments; consequently, simint receives a single argument called
REST OF LINE. A cal to %lex validates the format of the user input and extracts the individual
‘‘arguments’. The regular expression used to parse the command line is:

"CHG=Y([:digit:]{3})$0([:digit:]{ 3} $L([:digit:]{ 3} A$2-([0-7])$3,([0-7])$4/([: digit:] +)5
And the actual directive definition:
directive 'SIM#INT’ (REST OF LINE) is
not standard

begin
local MJF, MNF, RE, START BIT, STOP BIT, VALUE, WORD

RE = ""CHG=5([:digit:]{ 3})$0([:digit:]{ 3} 7)$1" & ;;
"([-digit:]{ 3} 2)$2-([0-7])$3,([0-7])$4/([.digit:]+)$5%"

Sun Release 4.1 Last change: 25 October 1993 28

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

if (%lex (Youpper (REST OF LINE), RE, ;;
WORD, MNF, MJF, START BIT, STOP BIT, VALUE)) then

... Range-check the arguments and
... forward them to the internal simulator.

else
... invalid argument ...

endif

end

Two of TSTOL’s lexical functions, % search and %replace, provide powerful search-and-replace capa-
bilities based on regular expressions. % search returns the text matched by a regular expression in a
target string. For example,

%search ("MB012345.678", "[:digit:]{3,3}")

returns "012", the day field from an IMP block history file name. (Actualy, %lex is more suited to
field extraction, but | can’'t think of a good example off the top of my head!)

%replace provides TSTOL with string editing abilities and is invoked as follows:
%replace (target, regexp, replacement text [, max substitutions])
%replace scans target, looking for a substring matched by regexp; if found, the matched substring is
replaced in a copy of target by replacement text. Up to max substitutions are made in target; the
default is to replace all occurrences of the matched substring by replacement text. The following char-
acter sequences embedded in the replacement text provide additional editing capabilities:
$n Insert the subexpression (0..9) matched by ‘‘(RE)$n’’ in the regular expression.

$& Insert the text matched by the full regular expression. For example, ‘‘$&$& '’ replaces
the matched text by two copies of itself.

$In Insert the matched subexpression (0..9), converted to lower case.

$l& Insert the text matched by the full regular expression, converted to lower case.
$un Insert the matched subexpression (0..9), converted to upper case.

$u& Insert the text matched by the full regular expression, converted to upper case.
c Insert character c; e.g., ‘‘\$'"’ inserts a dollar sign in the replacement text.

To illustrate, the following invocation of %replace

%replace ("0 abcdef 0", "(abc)$L(def)$2", "$2%1 is $& split in half and reversed")
returns the following string:

‘‘defabc is abedef split in half and reversed’’

A more useful application of replace is found in the definition of directive LIST PAGES, a foreign
directive which lists the names of pages the operator can bring up with the page command. Environ-
ment variable $UIDPATH is used by TPOCC's display subsystem to locate page definition files. The
value of UIDPATH is a colon-separated list of UNIX pathnames, as in the following example:

/home/mi ssion/di splay/uil/%U.uid:/home/miss on/database/dandr/uil /%U.uid

When processing a page name directive, the display subsystem substitutes name for **%U’" in the UID-
PATH string and scans the list of directories, looking for the ‘‘name.uid’’ page definition file. The
LIST PAGES directive, on the other hand, is not looking for a specific file, but for a whole set of files.

LIST PAGES uses %replace to convert the UIDPATH to a comma-separated list of csh(1)-style wild-
card file names:

/home/mission/display/uil/Cuid, /Thome/missi on/database/dandr/uil/Cuid

Sun Release 4.1 Last change: 25 October 1993 29

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

A list of al file names matching these wildcard pathnames is displayed on the operator’s console. The
complete directive definition for LIST PAGES is shown here:

directive LIST PAGES is
begin
local FILE NAME, I, UIDPATH

UIDPATH = %default (%env ("UIDPATH"), "./%U.uid")
UIDPATH = %replace (UIDPATH, ":", ",")
UIDPATH = %replace (UIDPATH, "%[:alpha:]", "O0")
for | =1 to %nwords (UIDPATH) do
do
FILE NAME = %fsearch (%word (UIDPATH, 1))
break if (FILE NAME ="")
write %upper (%fparse (FILE NAME, "FILENAME"))
enddo
enddo
end

The first %replace substitutes commas for colons in UIDPATH; the second %replaces converts
“'%0X’’s to asterisks.

Generic TSTOL Commands

The following TSTOL commands are available in al TSTOL languages, regardless of their mission
dependencies. Sample definitions of aliases and operations classes for the built-in, generic commands
can be found in /home/tpocc/source/generic.prc. A ‘‘start GENERIC'' statement in your server ini-
tialization file will process these definitions, although the TSTOL parser still works without them. See
the directive directive for more information on assigning directive attributes.

access add privilege [, ...]

access delete privilege [, ...]
changes the operator’'s current privileges for executing directives. The access add directive
attempts to add the requested privileges to the operator’s current privileges. If any one of the
requested privileges is refused, the directive fails and none of the requested privileges are
added. The access delete directive deletes the specified privileges from the operator’s current
privileges. The shoacc directive displays the operator’s current privileges.

Abbreviations. acc

del
Examples. access add MC, CC, DOC ; Rule the world.
access del CC ; Relinquish command controller status.

ask prompt [variable]
issues a prompt to the operator and stores the next line of input from the operator into vari-
able. If variable is not specified, the input is stored in local variable ANSWER. abort (or ab)
can be entered to terminate the ask prompt with an error.

Example: ask "Host name of front-end computer? " FRONT END
break [if expr]

breaks out of the current do loop if expr evaluates to a non-zero value. break by itself is an
unconditional break.

Sun Release 4.1 Last change: 25 October 1993 30

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

Example: (see do-enddo)

cd [pathname]
changes the parser’s current working directory to pathname; if a pathname is not specified, cd
simply displays the current directory. This directive is useful if you're running a network-
based parser server, you're editing and testing TSTOL procedures in pathname, and the
parser’s $mission PROC FILE environment variable was set so the parser can search pathname
for TSTOL procedures. Difficult-to-parse pathnames (e.g., VMS directory specifications)
should be enclosed in string quotes.

Examples. cd "/test_procs ; On UNIX.
cd "[operations.test procs]” ; On VMS.

continue [if expr]
skips the remaining code in the current do loop and continues with the next iteration of the
loop. continue if continues if expr evaluates to a non-zero value. continue by itself uncondi-
tionally continues the loop.

Example: (see for-do-enddo)

debug [on| off]
turns debug on and off. If debug is on, the parser outputs to stdout the lexical and syntactical
rules that are matched during the parsing of input. If on or off is not specified, the current
debug state is displayed.

dialog manual [... message,] prompt [[tag]]

dialog prompt [... message,] prompt [[tag]]
performs a dialog mode transaction. The dialog directive should only be submitted by applica-
tions programs communicating with the parser over a network connection (established via the
remote directive). When a dialog manual directive is received, zero or more messages are
displayed in the operator output window and the operator is prompted for input by prompt; the
next line entered is returned to the source of the dialog directive. The parser then waits for
another message from source; e.g., another dialog directive or a status message. The effect of
dialog manual is basically equivalent to the following sequence of directives:

write message

... other messages ...

ask prompt

let ANSWER = %upper (ANSWER)
transact source "[DRtag] ", ANSWER

If no procedure file is active, dialog prompt functions just like dialog manual. |If a procedure
is active, the dialog input will be read from the procedure file, not the operator. dialog
manual is typically used for dialogs such as critical command acknowledgements,; dialog
prompt is intended for dialogs such as spacecraft command entry.

Before a dialog response is returned to the source of a dialog directive, text substitution is
applied to the response, leading and trailing blanks are deleted, and the entire line is converted
to upper case.

Both dialog directives alow an optional tag that will be returned to source along with the
input. A tag is a string of arbitrary characters enclosed in square brackets that the applications
task can use to keep track of dialog directives and responses.

directive keyword [(formall, ..., formalN)] is

Sun Release 4.1 Last change: 25 October 1993 31

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

... directive attributes ...
begin

... directive body ...
end

directive keyword is
built_in
... other directive attributes ...
end
defines a ‘‘foreign’’ directive. The directive definition specifies the keyword that invokes the
foreign directive, assigns attributes (aliases, operations classes, etc.) to the keyword, and pro-
vides a procedural definition of the directive's execution. Directive attributes include:

alias alias| , ...]
defines aliases for the directive keyword. Fixed- and variable-length abbrevi-
ations can be specified by enclosing the alias in single quotes (assuming the
-quotes2 command line option) and embedding one of the specia characters,
“#' or 'O, “'#° denotes a fixed-length abbreviation; e.g., 'PHAGE
matches p and page. ‘‘0’ denotes a variable-length abbreviation; eg.,
"POAGE’ matches p, pa, pag, and page.

built_in
indicates that the directive is built-in, i.e., the generic TSTOL directives that
are hard-coded in the parser. In this case, no directive body is defined; the
foreign directive definition is used only to assign attributes to the built-in
directive.

classclass|, ...]
assigns operations classes to the directive. In order to execute the directive,
the operator must possess one of the corresponding capabilities.

[not] standard
controls the interpretation of the directive arguments. Arguments to standard
directives are interpreted in the same fashion as arguments in a start direc-
tive. Arguments to non-standard directives are not interpreted; the parser
treats the remainder of the command line following the directive keyword as
a single argument. Non-standard directives should be declared as expecting a
single argument; e.g., ‘‘directive name (REST OF LINE) is ...”. The pro-
cedure body is responsible for parsing and interpreting the contents of
REST OF LINE, not a difficult task if you use the %-functions available in
TSTOL.

The directive body is essentially a TSTOL procedure — rather than being input and executed
from a file upon demand, the directive body is input at start-up time and stored in memory.
During the processing of a directive definition and after the begin keyword has been parsed,
the directive body is input line-by-line — no parsing and no text subgtitution — until a line
whose first word is end is encountered. Consequently, directive definitions should not be
nested within other directive definitions. Directive definitions can appear in if-then-else
blocks, however.

do [until expr]
enddo
repeats a group of commands over and over. do until loops until expr evaluates to true (a

non-zero value). do by itself loops forever. break terminates a loop; continue skips to the
next iteration. (The do if and do while directives available in an earlier version of TSTOL are

Sun Release 4.1 Last change: 25 October 1993 32

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

still supported, but the use of while-do is preferred.)

Example: do
ask "Finished (y/n)? "
break if (ANSWER ="y")
... continue processing ...
enddo

[status =] %ds (command)
sends an ASCII command string to the primary data server (designated by the %liv(host) inter-
nal variable). %ds returns true if the command was successfully sent and false otherwise.
Currently, the data server only responds to ‘‘DEBUG ON'’ and ‘‘DEBUG OFF'’ commands.

Example: %ds ("debug on") ; Enable data server debug.

echo [on| off]

echo save [on | off]

echo restore
turns command input echo on and off. By default, operator and procedure input are echoed to
the operator’s display. If on or off is not specified, the current echo state is displayed. echo
save and echo restore push and pop settings on an echo state stack, allowing procedures to
turn echo on and off without affecting the echo settings of parent procedures.

Example: proc CLASSIFIED
echo save off
... secret stuff ...
echo restore
endproc

error [expr [, expr..]]
simulates an error condition. The optional expressions are formatted, concatenated, and
displayed on the operator’s screen as a single message and execution is suspended until further
direction is received from the operator. error is useful in procedures for signalling user-
detected error conditions.

Example: proc CONNECT (HOST)
remote STATE_ MANAGER is MISSION & " stmgr_parser" on HOST
if (Yostatus) error "Unable to contact the state manager on " & HOST & "."
endproc

exec [on| off]
sets the internal execution mode of the parser. These modes include nop, execute,
proc search, proc exit, wait, etc. If the parser gets lost executing your commands, exec on
will unconditionally return the parser to execute mode. exec by itself displays the current exe-
cution mode.

Examples: exec
... Modes: Execution = “*proc_search’’ is displayed on the screen ...
exec on
... Modes. Execution = ‘‘execute’’ is displayed on the screen ...

exit [prompt]
terminates the parser. If prompt is specified, the operator is first asked if he/she realy wants to
exit; if the answer is yes, the program exits. This directive only terminates the parser associ-
ated with the current TSTOL input window; the directive does not bring down parsers attached
to other windows or the parent server process.

Sun Release 4.1 Last change: 25 October 1993 33

TSTOL (9)

MISC. REFERENCE MANUAL PAGES TSTOL (9)

Examples: exit
exit "The passis still in progress; do you really want to exit (Y/N)? "

for variable = expr [down] to expr [step expr] do

enddo

repeats a group of commands a specified number of times. In an incrementing loop:

for counter = lower to upper [step increment] do
the counter variable is initialized to the lower bound; the loop is executed as long as the
counter’s value is less than the upper bound (the loop may not be executed at al). After each
loop iteration, the step-value is added to counter. In a decrementing loop:

for counter = upper down to lower [step decrement | do

the counter variable is initialized to the upper bound; the loop is executed as long as the
counter’s value is greater than the lower bound (zero iterations are possible). After each loop
iteration, the step-value is added to counter, so be sure and specify a negative increment. In
all cases, break will prematurely exit a loop; continue will skip to the next iteration.

Example: for | =1 to NUM ITEMS do
ask "Processitem " & | & " (y/n)?"
continue if % match (ANSWER, "N#O")
... process itemi ...
enddo

global symbol [, ...]

go

declares one or more global variables. The global command can be used anywhere and any-
time, but, once entered, global variables remain in the symbol table forever. Global variables
are accessible at any procedure level, unlike local variables (see the local command) which can
only be referenced at the level in which they were declared.

Example: global MISSION, PI
let MISSION = "HST"
let Pl =3.14

terminates a wait condition (see the wait command) or single-steps through a procedure (see
the step command).

Abbreviations. g

goto label
goto line

causes the parser to branch to a specified line number or label in the current procedure.
Branching into the middle of an if-then-else block or a do loop is forbidden; see the subsec-
tion, Procedure Definition and Control, for more information about this restriction.

Examples. goto ICE SKATE

ICE_SKATE:

if expr command

Sun Release 4.1

conditionally executes a single command. The command following if is executed if expr
evaluates to a non-zero value. (Also see the block-structured if-then-else command.)

Examples: if (VALUE > LIMIT) write "Value", VALUE, " exceeds limit."
if (ERROR) goto ERROR EXIT

Last change: 25 October 1993 34

TSTOL (9)

MISC. REFERENCE MANUAL PAGES TSTOL (9)

if expr then

elseif expr then

else
endif
conditionally executes blocks of commands. The commands following if are executed if the
if's expr evaluates to a non-zero value. Commands following elseifs are executed if the previ-
ous if-elseifs failed and the new elseif's expr evaluates to a non-zero value. Commands fol-
lowing else are executed if al else fails. elseif and else blocks are optional. if-then-else
blocks can be nested.
Example: do
ask "Choice (1 = first choice, 2 = second choice, 3 = third choice)? "
if (ANSWER = 1) then
goto CHOICE 1
elseif (ANSWER = 2) then
goto CHOICE 2
elseif (ANSWER = 3) then
goto CHOICE 3
else
write "Invalid choice: ", ANSWER
endif
enddo
killproc [all]

aborts the currently executing procedure and resumes execution of the parent procedure. If all
is specified, al levels of procedure execution are aborted.

Abbreviations: kp
killp

[let] variable = expr
[let] system variable = expr

assigns a value to a variable. variable can be any local or global variable (see the global and

local commands); if not yet declared, variable is automatically declared as a local variable.

System variables on both the left and right hand sides of the equals sign can be referenced as:
mnemoni c[#process| [@host] [[indexX]]

The parser automatically establishes a network connection with the data server on the remote

host and transmits the commands needed to store or recall a system variable's value.

Examples: global GVAR
local LVAR

let GVAR = 123.456

LVAR = "abcdef"

; System variables are on both sides in the following assignment:
FORMAT STR[2] = FORMAT STR#ICE DECOM @space[3]

local symbol [, ...]

Sun Release 4.1

declares one or more local variables. Local variables are local to the currently executing pro-
cedure and can be declared anywhere within a proc-endproc definition. A procedure’s local
variables disappear when the procedure exits (via return, endproc, or killproc). If no pro-
cedure is running, a local declaration is equivalent to a global declaration.

Last change: 25 October 1993 35

TSTOL (9)

MISC. REFERENCE MANUAL PAGES TSTOL (9)

Example: (see proc-endproc)

memory

displays the amount of memory allocated via str_dupl(). This command is useful for detecting
memory leaks during debug and test of the parser.

[status =] %net (answer, name [, options])
[status =] %net (call, name [, optiong])

[status =] %net (close, name)

[is connected =] %net (connected, name)
[input_pending =] %net (poll, name)

[message =] %net (read, name)

[status =] %net (write, name, message)

Sun Release 4.1

are used to establish and communicate across network connections, messages are exchanged as
ASCIl grings in XDR format. These functions can be used as stand-alone directives or
embedded in expressions. If a %net function is entered interactively as a directive, its return
value is displayed on the operator’s screen.

The answer function listens for and accepts a connection request from a client. true is
returned if the operation was successful; false indicates an error. name identifies the connec-
tion in subsequent %net calls (e.g., the read and write functions). options is a string contain-
ing one or more of the following, UNIX-style command line options:

-server name
specifies the name of the server port at which to listen for connection
requests. If this option is not specified, the server name defaults to the con-
nection name (the argument following the answer keyword).

—connect directive
specifies a TSTOL directive that is to be executed when the network connec-
tion is established. A connect directive is useful in conjunction with the
-nowait option (see below).

—error directive
specifies a TSTOL directive that is to be executed when an error is detected
on the connection. This error can be assumed to be a broken connection.

—input directive
specifies a TSTOL directive that is to be executed when input is detected on
the connection. The directive must read one or more lines of input from the
connection using the %net (read, ...) function. If the -input option is not
specified, then input on this connection will be treated as standard, TSTOL
network input; i.e., each line of input is read and executed as if it were a
directive or status message received from a remote application.

—[no]wait
controls whether or not %net (answer, ...) waits for a connection request to
be received; -wait is the default. If -nowait is specified, the answer function
creates a server listening socket, but does not wait for a client connection.
When a connection request is eventually received, it is accepted in ‘*back-
ground’’ mode and the -connect directive, if specified, is executed.

The call function establishes a connection with a (possibly remote) network server. true is
returned if the connection was successfully established and false otherwise. name identifies the
connection in subsequent %net calls (e.g., the read and write functions). options is a string
containing one or more of the following, UNIX-style command line options:

Last change: 25 October 1993 36

TSTOL (9)

MISC. REFERENCE MANUAL PAGES TSTOL (9)

-host name
specifies the host name of the computer on which the to-be-contacted server
is running. The default is the local hogt; i.e., the computer on which tstol is
running.

—-Server name
specifies the name of the server being contacted. If this option is not
specified, the server name defaults to the connection name (the argument fol-
lowing the call keyword).

—connect directive
—error directive

-input directive
are described under the answer function above. There is no counterpart to
the -nowait option for the call function, so the -connect directive will be exe-
cuted immediately if the connection attempt is successful.

The read function inputs the next message from the designated network connection. The text
of the message is returned as read’s function value; a zero-length string (**'") is returned in
case of an error.

The write function outputs a message to the designated network connection. message can be
an arbitrary TSTOL expression that is evaluated, formatted as a string, and output to the con-
nection. The write function returns true if the message was succesfully written to the connec-
tion and false if not.

The poll function returns true if there is input pending on the specified network connection
and false otherwise.

The connected function returns true if the specified connection has been established and false
if not. This function is intended for checking to see if a connection request has been received
and answered on a -nowait server port (see the answer function).

The close function closes the specified connection.

Examples: ; Connect to the state manager.
%net (call, STATE MANAGER, "-host host" & ;;
"-server mission stmgr parser” & ;;
"-error {%net (close, STATE MANAGER)}")
; Send it a WORKSTATION command.
transact STATE MANAGER "[XQ] WORKSTATION host"

parse expr [, expr ...]

constructs and executes a directive. The expressions are formatted and concatenated to pro-
duce a single directive string, which then replaces the current line of input (i.e., the parse
directive itself). parse is more powerful than text substitution and, consequently, useful when
text substitution isThis capability is useful when

Examples. write "Connecting to spacecraft command server ..."
write "Your menu choice of ", I, " isinvalid. Please enter it again."

pause [process] [pause attributes]

Sun Release 4.1

pauses execution until input is received from the designated process or until the operator enters
a command. A network connection must be established to process (using the remote directive)
before pausing. If process is not specified, pause waits for input from any remote process or
from the operator. pause only waits for input to become available - it does not actually read
the input. The optional pause attributes include

Last change: 25 October 1993 37

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

[not] inline
affects when the input received from process is read. The default behavior,
inline, guarantees that the next line read by the parser will be the input from
process. If not inline is specified, the input from process must compete with
other active input sources for the parser’'s attention. Since the execution of a
foreign directive normally locks out other input, these attributes are most
meaningful in foreign directives.

timeout seconds
specifies how long (in seconds) pause will wait for input from process; tim-
ing out is treated as a directive error. The timeout period is initially set to 60
seconds, but it can be changed by assigning a new value to %liv(timeout)
(see Local Internal Variables).

pause is useful in foreign directive definitions for waiting on status messages from remote
processes (although the transact directive is preferred).

Example: remote STATE MANAGER is ...

tell STATE_ MANAGER "[XQ] ACQUIRE ON" ; Send command.
pause STATE MANAGER ; Wait for completion status.

pms
prints memory statistics for malloc(3)’ed memory to stdout.

position label | line
causes procedure execution to branch to a specified line number or label and to enter an uncon-
ditional wait state, pending operator input. Branching into the middle of an if-then-else block
or a do loop is forbidden; see the subsection, Procedure Definition and Control, for more
information about this restriction.

Abbreviations. pos
Example: position START OF TEST

proc name [(formall, ..., formalN)]
... body of procedure ...
endproc
defines a TSTOL procedure called name which expects arguments formall through formalN.
Ideally, procedure name should be stored alone in a file (see the start directive for file naming
conventions); then, a smple
start name (argl, ..., argN)
will call the procedure. Multiple procedures can be defined in a single file, but the start direc-
tive must then indicate where the procedure can be found:
start name (argl, ..., argN) in filename
The parser will search the file at run-time for the called procedure; the procedure files do not
need to be pre-processed to build a cross-reference for the parser.

Example: proc SLOW SQUARE (X, SQUARE) ; Pass SQUARE by %r ef.
SQUARE = 0
for | =1to X do
SQUARE = SQUARE + X
enddo
endproc

Sun Release 4.1 Last change: 25 October 1993 38

TSTOL (9)

MISC. REFERENCE MANUAL PAGES TSTOL (9)

remote logical name [isserver [on host]]

reset

establishes a network connection with server on the computer host; global variable % status is
set true if the connection is successfully established and false otherwise. An internal table
associates logical _name with the connection. logical _name can be used in the tell command to
send a message to server; any input from server is interpreted as a normal TSTOL command.
Some mission-specific directives assume connections have been established under pre-defined
logical names, so the appropriate remote commands should be issued before executing these
directives. Logica names are case-insensitive. Host and server names are case-insensitive,
too; the parser converts these to all lower case before using them. Host and server names can
be arbitrary expressions that are resolved into strings, remember to enclose them in quotes,
when necessary. An unspecified host defaults to ‘‘localhost’” (the machine you’re running on).

If remote logical name is entered without a server specification, a dummy server entry is
created in the parser’'s internal table. Output to logical name is not written out to the network,
although event messages and so forth are generated as if it were. This feature is useful during
stand-alone testing of the parser.

Example: et FRONT _END = "mvme-147"
do
remote NBP is "nbp_server" on FRONT_END
break if (Yo status)
write "Attempting to connect to Nascom Block Processor on ", FRONT END
enddo

attempts to reset the execution state of the parser. Use reset if your new TSTOL procedure
has hopelessy confused the parser.

respond error expr [, expr ...]
respond success

return a status message to the source of the current directive. If the source of the directive is
the operator (OPIO), respond error displays an error message consisting of the concatenation
of the expr’'s, respond success displays a ‘‘directive complete’”” message on the operator’'s
screen. If the source of the directive is a remote application on the network, respond error
returns an ‘‘[ST] 1 text’’ message to the remote task, where text is the concatenation of the
expr’s, respond success returns an ‘‘[ST] 0"’ message to the remote process.

Example: respond error "Invalid parameter: ", %word (REST OF LINE, 1)

return
returns control from the currently executing procedure to its parent.
Example: (see proc—endproc)
see table
dumps the contents of an internal parser table to stdout. table can be one of the following:
echo dumps the echo state stack (see echo_util.c).
file lists the current procedure file (see fish_util.c).
foreign dumps the foreign directive table (see fig_util.c).
hash dumps the foreign directive hash table (see fig_util.c).
help displays a list of the tables that see knows about.
lex dumps the LEX input context stack (see lex_util.c).
net dumps the network client/server table (see clash_util.c). This table maps
logical names to network connections (see the remote command).
reserved dumps the reserver keyword list (see res_util.c).
Sun Release 4.1 Last change: 25 October 1993 39

TSTOL (9)

MISC. REFERENCE MANUAL PAGES TSTOL (9)

stack dumps the procedure file stack (see fish_util.c).
symbol dumps the symbol table (see sym_util.c).

[status =] %shell (open [, shell])

[status =] %shell (close)

[is connected =] %shell (connected)
[input_pending =] %shell (poll)

[input =] %shell (read)

[status =] %shell (write, command)

are used to access a shell execution stream through which the TSTOL interpreter can submit
commands to the host operating system’s command language shell (e.g., csh(1) under UNIX,
DCL under VMS).

The open function spawns a subprocess to execute the shell commands. Under VMS, this sub-
process always runs the VMS Command Language Interpreter (CLI); under UNIX, you can
specify a shell other than the default /usr/bin/csh. open returns true if the shell execution
stream was successfully opened and false otherwise.

The write function is used to submit a command to the shell subprocess. The command can
be an arbitrary TSTOL expression; the expression is evaluated and sent as a string to the shell
subprocess. write returns true if the command was successfully written to the shell execution
stream and false otherwise.

The read function is used to read the results of a command executed by the shell subprocess.
read reads and returns a single line of text from the shell execution stream; a zero-length
string (‘*"’) is returned if there was an error reading from the stream.

The poll function checks to see if output from a previoudy-submitted command is ready for
reading. true is returned if there is input pending from the shell execution stream and false if
not.

The connected function returns true if the shell execution stream has been opened and false if
not.

The close function closes the shell execution stream and deletes the shell subprocess. close
returns true on a successful close and false on an error.

Examples: %shell (open) ; Display current directory (VMS).
%shell (write, "SHOW DEFAULT")
write "Current directory is" & %shell (read)
%shell (close)

shoacc [directive |

displays the operator’s current privileges for directive execution. If a directive keyword is
specified, shoacc displays the privileges required in order to execute that particular directive.

Abbreviations: sa

Examples: shoacc ; Display current privileges.
shoacc SIMINT ; Displays "MC, CC", for instance.

show table

Sun Release 4.1

displays the contents of an internal parser table on the operator’s screen. table can be one of
the following:

help displays a list of the tables that show knows about.

Syv lists the names of the system variables known to TSTOL. show syv by
itself lists all of the system variables. A more selective listing is obtained
by specifying a wildcard variable name: ‘‘show syv wildcard’. For

Last change: 25 October 1993 40

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

example, ‘‘show syv [WOLTO’ lists al variables with ““VOLT"" in their
name.
watch displays a list of the active watchpoints (see the watch directive).

gtart name [(argl, ..., argN)]

gstart name [(argl, ..., argN)] at label | line
cals a TSTOL procedure. Arguments argl..argN are bound to formal parameters
formall...formalN in the procedure. name (converted to all lower case) is assumed to be the
name of the file containing the procedure; environment variable $mission PROC _FILE supplies
missing pathname components (e.g., directory, extension, etc.). When the procedure returns,
execution will resume with the statement following the start command.

Entering a start-at directive causes execution of the procedure to begin at the specified line or
label within the procedure. Starting in the middle of an if-then-else block or a do loop is for-
bidden; see the subsection, Procedure Definition and Control, for more information about this
restriction.

Text substitution is automatically enabled at the beginning of a procedure; the previous text
substitution mode is restored when the procedure exits.

Examples; start SLOW SQUARE (23, %ref (RESULT))
start EVERYWHERE (Here, There) at SOMEWHERE

step [on | off]

step time
turns single-step mode on and off. In single-step mode, the parser pauses before each input
directive and prompts the operator to enter go before the parser executes the next directive.
step or step on activate single-step mode; step off turns it off. step time puts the parser in
timed single-step mode — the parser pauses for time seconds between each input directive.

Examples: step ; Equivalent to step on
step off
step 5.0 ; Execute a command every 5 seconds.

stop watch watchpoint
cancels an active watchpoint (see the watch directive). watchpoint is the index (1..N) in the
active watchpoints list of the watchpoint to be cancelled; the show watch directive displays the
list of active watchpoints.

Example: show watch ; Display list of active watchpoints.
stop watch 2 ; Cancel #2 on the list.

tell logical name expr [, expr ...]
sends a message over the network to a remote server process, global variable % status is set
true if the message is successfully sent and false otherwise. The server process is identified by
its logical name (see the remote directive). The exprs are converted to ASCII, concatenated,
and output as a single string. ‘‘OPIO’’ is a specia logical name that designates the operator’s
display.

Examples: tell OPIO "[XQ] JUMP"
tell STATE MANAGER "[XQ] ACQUIRE ON"

transact process expr [, expr ...] [pause attributes]
sends a message to the designated process and then waits for a response; global variable
%status is set true if the transaction is successfully completed and false otherwise. transact
is equivalent to an indivisible sequence of the following directives:

Sun Release 4.1 Last change: 25 October 1993 41

TSTOL (9)

MISC. REFERENCE MANUAL PAGES TSTOL (9)

tell process expr [, expr ...]
pause process [pause attributes]

The indivisibility of transact is important. If the non-atomic tell-pause were used instead of
transact, the response from process might be read and interpreted before pause is executed.
This behavior has, in fact, been seen in TSTOL procedures — the pause directive waits in vain.
The problem does not occur in foreign directives, since network and operator input are nor-
mally locked out during the execution of a foreign directive. See the tell directive for more
information about process names, see the pause directive for more information about
pause attributes.

Example: remote STATE MANAGER is ...

transact STATE MANAGER "[XQ] SPIN SATELLITE" ; Send command.

wait [expr]
wait until date time
wait until expr [timeout seconds]

stalls the parser for a designated amount of time. wait by itself causes an indefinite wait. wait
expr stops the parser for expr seconds. wait until date time suspends execution until the
specified GMT is reached. wait until expr re-evaluates expr once a second until expr evalu-
ates to true, at which point execution continues with the next directive. The operator can ter-
minate any type of wait state by entering go or a superseding wait command.

Abbreviations:. w

Examples: wait ; Wait forever.
wait 60.0 ; Wait a minute.
wait until 12:00:00 : Wait until lunchtime.

wait until (BATTEMP > 100) ; Conditional wait.

watch events| @hodt] [filtering parameters]

watch events @hodt] [filtering parameters] is
.. directive attributes ...

begin.

... watch body ...

end

Sun Release 4.1

sets a watch on event messages from host. If no host is specified, the default is the current
event logging host (see the %liv(events) internal variable); active watches on event messages,
however, do not follow changes to the event logging host. The watch body defines and is
stored as a temporary, foreign directive that will be executed whenever an event message is
received from the specified host. If no watch body is defined in the watch directive, a default
watchpoint directive is substituted that displays the event message on the operator’s screen.

The filtering parameters specify the types of event messages that are to be received. The
parameters are specified as UNIX-style command line options encoded in a string. Valid
options are:

-class class specifies a class of event messages that are to be received. Multiple
classes can be requested by entering this option more than once in the
filter string.

-critical specifies that critical commands only are to be received.

-number start[/end]
specifies that event numbers in the range start...end are to be received.

-substitute /RE/text/[g]
specifies that regular expression text substitution is to be applied to each

Last change: 25 October 1993 42

TSTOL (9)

MISC. REFERENCE MANUAL PAGES TSTOL (9)

incoming event message (on this watch events stream). This capability
alows for the arbitrary insertion, deletion, or rearrangement of fields in
fixed-format event messages. If the g flag is not present, the first match of
regular expression RE in the event message is replaced by text; if the g
flag is present, the replacement is applied globally to all matches of RE in
the event message. Regular expressions and replacement texts are
described in more detail in another subsection, Regular Expressions.

If no filtering parameters are specified, all event messages generated on the given host are
received.

The show watch directive displays a list of active watchpoints on the operator’s screen. The
stop watch directive cancels an active watchpoint.

For more information on watchpoints, see the subsection, Watchpoints, that appears earlier in
this manual .

Abbreviations: event

Examples: watch events "-class telemetry -critical” ; Monitor critical telemetry events.
watch events@dsn ; Monitor events from DSN.

watch system variable [sampling type [rate]]

watch system variable [sampling type [rate]] is

begin

directive attributes ...

... watch body ...

end

sets a watch on a system variable. sampling type is one of the following:

asynchronous specifies that the data is to sampled every rate seconds (default =
5.0); the sampling is asynchronous with respect to when the values
are generated.

synchronous requests every rate-th value (default = 1) of the system variable; the
stream of data is synchronous with respect to when the values are
generated.

The watch body defines and is stored as a temporary, foreign directive that will be executed
whenever a value is received for the specified system variable. If no watch body is defined in
the watch directive, a default watchpoint directive is substituted that just displays the
variable's value on the operator’s screen.

The show watch directive displays a list of active watchpoints on the operator's screen. The
stop watch directive cancels an active watchpoint.

For more information on watchpoints, see the subsection, Watchpoints, that appears earlier in
this manual .

Abbreviations: async
sync
Example: (see the subsection on Watchpoints)

while expr do

enddo

Sun Release 4.1

conditionally executes a group of directives over and over, while expr evaluates to true (a
non-zero value). break and continue provide further control of execution inside the loop.

Last change: 25 October 1993 43

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

Example: while (BATTVOLT < 220) do ; Poll telemetry point every 5 seconds.
wait 5
enddo

write expr [, expr ...]
congtructs a string of text and displays it on the operator's screen. Numeric expressions are
formatted in ASCII.

Examples. write "Connecting to spacecraft command server ..."
write "Your menu choice of ", I, " isinvalid. Please enter it again."

Sample TSTOL Server Procedure

Running tstol in -answer mode creates a TSTOL server process that listens for connection requests
from operator interface tasks. When a network connection request is received, a TSTOL interpreter
subprocess is forked to service the connection (i.e., to interpret directives sent by the operator interface
task). To minimize the delay in bringing up an interpreter subprocess, TSTOL initialization is divided
into two phases. First, the TSTOL server process reads and executes a server procedure, after which it
listens for connection requests. Second, each forked intepreter subprocess reads and executes a startup
procedure. (When running tstol in -call, -single_user, or -tty mode, or under an operating system that
doesn’t support fork(3), the server and startup procedures will both be read by the same process.)

The server procedure is typically a large file containing definitions for the mission-specific TSTOL
directives. The startup procedure, on the other hand, is a small file containing initialization activities
that must await the connection to the operator interface task: establishing network connections with
remote applications, bringing up display pages, etc.

TSTOL server procedures are generally layed out as follows:
SENNEEEEEEEEEEEEEEEEEEEEENEEEEEEEEEEEEEEEEEEENEEEEEEEEEENEEEEEERENNNERER

: TSTOL Server Initialization Procedure

[T

proc mission SERVER
echo save off

local LOG STATE ; Disable procedure logging.
LOG _STATE = %liv (log_procedure€)
%liv (log_procedure) = false

... global variable declarations and initialization ...

... directive definitions ...

write MISSION, " TSTOL Server initialization complete.”
%liv (log_procedure) = LOG_STATE

echo restore
endproc

Sun Release 4.1 Last change: 25 October 1993 44

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

Procedure statements are normally logged as they're executed. Since a server initialization procedure
may be a 1000 or more lines in length, none of which is of any interest to the user, procedure logging
is disabled at the beginning of the server procedure and then restored to its prior state at the end of the
procedure.

Global TSTOL variables are primarily used to hold constants. In the following example from the server
initialization procedure for the X-Ray Synthetic Aperture Radar (X-SAR) mission, a number of regular
expressions used to validate directive arguments are defined:

; Global variables:

; FORMAT RE - isaregular expression that defines the legal
; telemetry formats for the mission.

; GEOMETRY RE - is aregular expression that defines the
; format of X Windows geometry specifications for
; the TPOCC display program (see the PAGE directive).

; STATIONS RE - is aregular expression that defines the
; mission’s legal station IDs.

; SUBSYSTEM - is the subsystem ("TS" or "CS") in which TSTOL
; isrunning. This variable is set by the startup
; procedure, XSAR STARTUP.

global FORMAT RE, GEOMETRY RE, STATIONS RE, SUBSYSTEM

FORMAT RE =""(SCI | ENG| MAN | CON)$"

GEOMETRY RE = ""([0-9]+xX][0-9]+)2([-+][0-9]+[-+][0-9]+)?$"
STATIONS RE ="(JS1) | (JS2)"

SUBSYSTEM ="TS"' ; "TS" or "CS', set in "xsar_startup.prc”.

The smplest directives simply forward themselves to another task for processing. For example, X-
SAR’s static directive instructs the report generator to bring up a static display page (animated by
archival telemetry data):

; (O T A T A A O O O
; STATIC <page name>
; (O T A T A A O O O

directive STATIC (PAGE NAME) is
begin
% status = false
if (PAGE NAME ="") then
error "Enter ""STATIC <page name>""."
else
transact REPORTS "[XQ] STATIC ", PAGE NAME
endif
end

Sun Release 4.1 Last change: 25 October 1993 45

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

The transact statement sends the static directive to the report generator and waits for a status message
in return; the status message will automatically set the global % status variable.

The /emd directive, used to send spacecraft commands to the spacecraft command processor, is a spe-
cial case (in many waysl). If /cemd is entered without any arguments, the spacecraft command proces-
sor enters into a dialog with tstol. Since tstol must exit /cmd’s directive body before it can carry on an
open-ended conversation with the command processor, the transact directive is qualified with the not
inline attribute. If /cmd is entered with arguments (e.g., an immediately-uplinked spacecraft com-
mand), the directive is executed as a normal exchange of directive and status messages with the space-
craft command processor. In the following definition of /cmd, typical for the missions on which this
directive has been used, tstol communicates with the spacecraft command processor via the state
manager:

; /CMD Spacecraft Commands
« (T

directive '/CMD’ (REST OF LINE) is
alias'/’
class CC
not standard
begin
% status = false
if (REST OF LINE ="") then
transact STATE MANAGER "[XQ] /CMD" not inline
else
transact STATE MANAGER "[XQ] /CMD ", REST OF LINE
endif
end

X-SAR's database directive causes the Database Interface (DBIF) task to open up a window on the
screen for viewing or editing database tables. In the definition below, the % match function is used to
validate the action keyword; % pick provides a simple means of converting the different abbreviations
of ““EDIT"’ to the fixed keyword expected by the Database Interface task:

I
; DATABASE VIEW | EDIT
I

directive DATABASE (ACTION) is
alias DB
begin
% status = false
ACTION = %pick (Yomatch (ACTION, "EDOT", "VIEW"), "EDIT", "VIEW")
if (ACTION ="") then
error "Enter ""DATABASE <VIEW | EDIT>""."
elseif (%onet (connected, DBIF)) then
transact DBIF "DATABASE ", ACTION
else
error "Unable to communicate with the Database Interface task."
endif
end

Sun Release 4.1 Last change: 25 October 1993 46

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

The definition of the page directive illustrates how to parse a non-standard command line using
TSTOL’s built-in lexical functions. The directive is entered as follows:

page page name [, [interval] [, [geometry] [, protect]]]

Because page was defined as a non-standard directive, the rest of the command line, from page name
on, is passed without interpretation to the directive body as a single string, REST OF LINE. Each of
the four arguments is extracted from REST OF LINE using the %word function. The page name
must be present. The update interval, a number, is checked with the %isnum function. The page
geometry is a single argument specifying the dimensions and location of the page:

[widthxheight][+ | -x _coord+ | -y coord]

This argument is most easily handled by a regular expression: if %lex is unable to match the user-
specified page geometry against regular expresson GEOMETRY RE (declared as a global TSTOL vari-
able above), an error message is displayed. A simple % match suffices for the fourth and final argu-
ment, the page protection flag:

; (T
; PAGE <page name>, [<interval>], [<geometry>], [PROTECT]
; (T

directive PAGE (REST OF LINE) is
alias P
not standard
begin
local PAGE NAME, UPDATE INTERVAL, GEOMETRY, PROTECTION

% status = false
PAGE NAME = %word (REST _OF LINE, 1)
UPDATE INTERVAL = %word (REST _OF LINE, 2)
GEOMETRY = %word (REST _OF LINE, 3)
PROTECTION = %word (REST OF LINE, 4)
if (PAGE NAME ="") then
write "No page name specified in PAGE directive."
error "Enter ""PAGE <page name>, [<update interval>], " & "
"[<geometry>], [PROTECT]""."
elseif (UPDATE INTERVAL <>"") and "
not %isnum (UPDATE INTERVAL)) then
write "Invalid update interval (", UPDATE INTERVAL, "
") in PAGE directive.
write "Enter ""PAGE <page name>, [<update interval>], " & "
"[<geometry>], [PROTECT]"", where"
error "<interval> is the interval in seconds between page updates.”
elseif ((GEOMETRY <>"") and "
not %lex (GEOMETRY, GEOMETRY RE)) then
write "Invalid page geometry """, GEOMETRY, """ in PAGE directive."
write "Enter ""PAGE <page name>, [<update interval>], " & "
"[<geometry>], [PROTECT]"", where"
error "<geometry> is formatted as " & "
""" [<width>x<height>][+/-<x_coord>+/-<y coord>]""."
elseif ((PROTECTION <>"") and
not % match (PROTECTION, "PCROTECT")) then
write "Invalid protection argument """, PROTECTION, "
""" in PAGE directive."
error "Enter ""PAGE <page name>, [<update interval>], " & "

Sun Release 4.1 Last change: 25 October 1993 47

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

"[<geometry>], [PROTECT]""."
else
if (PROTECTION <>"") PROTECTION = "PROTECT"
transact OPIO "[XQ] PAGE ", PAGE NAME, ", ",
UPDATE INTERVAL " " GEOMETRY, ", ", PROTECTION
endif
end

The X-SAR view directive brings up a separate editor window in which the operator can view a file.
The view directive uses %shell functions to fork a subprocess and issue an editor command to it. In
the directive definition below, a VAX/VMS DCL subprocess is created by % shell(open) and a SPAWN
command is submitted to the DCL intepreter to spawn an editor subprocess in the background. (In a
UNIX environment, you would use & to put the editor subprocess in the background.) A WRITE
SYS$OUTPUT command is queued up after the SPAWN command to return a ‘‘-- Done --"' message
to the TSTOL interpreter. Since the SPAWN command must complete before the WRITE
SYS$OUTPUT command is executed by the DCL interpreter, this message acts as a ‘‘caboose’’ to the
“train’’ of output from the preceding commands (i.e., the SPAWN directive). Thisis a commonly-used
technique in directives that interact with the shell subprocess. (In a UNIX environment, you would use
echo(1) instead of WRITE SY SSOUTPUT.)

; (O T
; VIEW <file name>
; (O T

directive VIEW (REST OF LINE) is
not standard
begin
local DCL_OUTPUT, FILE NAME, VIEW COMMAND

% status = false

FILE NAME = %word (REST_OF LINE, 1)
if (FILE_ NAME ="") then
error "Enter ""VIEW <file name>""."
return
endif
FILE NAME = %fparse (FILE NAME, MISSION & "$REPORTS..DMP")

VIEW COMMAND = "SPAWN/NOWAIT/INPUT=NL:/OUTPUT=NL: "
& "EDIT/TPU/READ ONLY/INTERFACE=DECWINDOWS "
& FILE NAME

; Has the shell been opened?
if (not %shell (connected) and not % shell (open)) then
error "Error opening a DCL subprocess. " & %liv (errno)
return
endif

if (%oshell (write, "ON ERROR THEN CONTINUE") and
%shell (write, VIEW _COMMAND) and 5
%shell (write, "WRITE SYS$OUTPUT ""-- Done --""")) then
do ; Read DCL output until done.
DCL OUTPUT = %shell (read)
break if (DCL_OUTPUT = "-- Done --")
write DCL OUTPUT

Sun Release 4.1 Last change: 25 October 1993 48

TSTOL (9)

MISC. REFERENCE MANUAL PAGES TSTOL (9)

enddo
else
error "Error issuing """ & VIEW_COMMAND & ;;
""" to DCL: " & %liv (errno)
return
endif

% status = true

end

Sample TSTOL Startup Procedure

A mission’s server initialization procedure is primarily used to define foreign directives. The mission’s
startup procedure, effectively executed when the operator ‘‘logs on’’ to TSTOL, is more flexible and
can make use of user-unique or time-dependent information to dynamically customize its initialization

actions.

For example, the X-SAR startup procedure performs the following functions:

Stores the subsystem name, ‘TS’ (telemetry subsystem) or ‘‘CS’ (command subsystem),
in aglobal TSTOL variable.

Instructs the Dynamic Display process to display any initial pages (e.g., the events page
and the TS or CS status page) on the screen.

Listens for and establishes a network connection with the User Interface process (the menu
system).

Listens for and establishes a network connection with the Database Interface process.
Establishes a network connection with the State Manager/

Establishes a network connection with the Report Controller (TS only).

Issues the appropriate initialization commands to the above tasks.

TSTOL startup procedures are generally layed out as follows:

TSTOL Startup Procedure

proc mission STARTUP (arguments)

echo save off

... local variable declarations and initialization ...
... Startup processing ...

write " [T " & MISSION & " (" & SUBSYSTEM & ") TSTOL ["

echo restore

endproc

Sun Release 4.1

Last change: 25 October 1993 49

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

The X-SAR control center is a distributed system consisting of a telemetry host computer running the
real-time telemetry software (e.g., telemetry reception and decommutation), a command host running
the real-time command software (e.g., command packaging and uplink), and a number of workstations
running the operator interface software (e.g., TSTOL and the graphical user interface). Each instance of
TSTOL must establish network connections with applications running on the real-time hosts and on its
own workstation. Consequently, X-SAR’s TSTOL startup procedure expects two arguments: the sub-
system name (TS or CS) and the name of the subsystem’s real-time host. The subsystem name is
stored in a global TSTOL variable (declared in the server initialization procedure) and the host name is
converted to lower-case:

proc XSAR STARTUP (TS OR CS, REALTIME HOST)
echo save off

local LOCAL HOST, MESSAGE, SERVER NAME

SUBSYSTEM = %uppper (%default (TS OR CS, "TS"))
LOCAL HOST = %lower (%liv (localhost))
REALTIME HOST = %lower (%default (FRONT END, LOCAL HOST))

The startup procedure then initiates the display of the local (TPOCC) events page and, depending on
which subsysetm is being accessed, the TS or CS status page:

page LOCAL EVENT, ,, +0+830, PROTECT
if (SUBSYSTEM ="CS") then

page CS STATUS, , , +945+740, PROTECT
else

page TS STATUS, , , +735+830, PROTECT
endif

Each X-SAR TSTOL process has network connections with 5 other applications (not including the data
server and the events subsystem): the dynamic (TPOCC) display task, the menu interface task, the data-
base interface task, the report generator, and the state manager. The state manager runs on the real-
time host computer; the other programs run on the operator’s workstation. The dynamic display task is
the first to connect to TSTOL, thereby ‘‘logging’’ the operator on to TSTOL. The X-SAR startup pro-
cedure is responsible for establishing the remaining 4 connections. TSTOL is a server with respect to
the menu interface task, so it listens for a connection request from that client:

if (SUBSYSTEM ="CS") then ; Command subsystem?
SERVER NAME = %lower (MISSION) & " csm"

else ; Telemetry subsystem.
SERVER NAME = %lower (MISSION) & " tsm"

endif

%status = %net (answer, UIF, "-server " & SERVER NAME & " " & ;;
"-error {%net (close, UIF)} " & "-nowait")
if (Yostatus) then
write "Listening for a connection request on " & SERVER NAME & "."
else
write "Error listening for a connection request on " & ;;
SERVER NAME & ": " & %liv (errno)

Sun Release 4.1 Last change: 25 October 1993 50

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

endif

The -nowait option in the %net(answer) call puts the “‘listen’’ in the background and allows TSTOL
to continue processing. When a connection request is finally received from the user interface task, the
network connection is automatically established without further intervention by TSTOL. TSTOL is also
a server to the database interface task, so a similar piece of code listens for connection requests from
that task.

TSTOL is a client of the report generator and the state manager, so these tasks listen for connection
requests from TSTOL. Since TSTOL may be up and running before the report generator and the state
manager, it periodically ‘‘calls’ them until they ‘‘answer’’. The following extract from X-SAR’s
startup procedure establishes a connection to the state manager and sends it a message identifying
TSTOL by its workstation name:

SERVER NAME = %lower (MISSION) & " stmgr_parser"

while (not %net (connected, STATE MANAGER)) do
%status = %net (call, STATE MANAGER, "-host " & REALTIME HOST
& 5
" -server " & SERVER NAME &;;
" -error {%net (close, STATE MANAGER)}")
if (not % status) then
MESSAGE = "Error establishing a network connection with "
& SERVER NAME & "@" & REALTIME HOST & ": "
& %liv (errno)
write MESSAGE
wait 10 ; Try again in 10 seconds.
endif
enddo

write "Established a network connection with" & ;;

SERVER NAME & "@" & REALTIME HOST & "."
transact STATE MANAGER "[XQ] WORKSTATION " & LOCAL HOST

FILES

/home/tpocc/obj _arch/tstol/tstol
Executable for TSTOL server/processor.

/home/mission/sour ce/procsgmission_server.prc
Procedure file read and executed by the TSTOL server at initialization time; the file should
contain a procedure named mission SERVER. The TSTOL server is the parent process that
listens for connection requests from the display subsystem and forks child TSTOL proces-
sors to service accepted connections. Perform time-consuming start-up tasks that are com-
mon to all child processors (e.g., loading directive definitions) in the server initialization
file; by doing so, the start-up time for the child processes is reduced considerably.

/home/mission/sour ce/procgmission_startup.prc
By convention, the procedure file read and executed by the TSTOL processor at initializa-
tion time (see the -startup command line option). The file should contain a procedure
named misson STARTUP. To keep processor start-up time to a minimum, make a sensi-
ble division of responsibilities between the server initialization file and the processor initial-
ization file.

/home/tpocc/obj _arch/tools/maple
Executable for Multiple APpLications Emulator. This program emulates a typical state
manager or applications task and is useful for stand-alone testing of the parser without hav-
ing to bring up the remote applications tasks with which a mission-specific parser must

Sun Release 4.1 Last change: 25 October 1993 51

TSTOL (9)

MISC. REFERENCE MANUAL PAGES TSTOL (9)

communicate. Directives sent by the parser to the emulator produce a successful status
message in response. In addition, spacecraft command dialogs are supported; a ‘‘/’’ direc-
tive sent by the parser initiates a chain of dialog prompt directives from the emulator,
which continues until abort or end is received from the parser. Testing the X-SAR TSTOL
provides a good example of using maple. The X-SAR parser must establish connections
with and talk to the REPORTS and STATE MANAGER subsystems. The following com-
mand starts up an emulator for both of these subsystems, as well as a data ‘‘sink’’ for event
messages.

% maple mission reports server mission stmgr_parser -z mission logger subsys

% ... run TSTOL ...
The non-option arguments on maple’'s command line are the network server names of the
REPORTS and STATE MANAGER tasks; the -z option specifies the event logger’'s server
name.

/home/tpocc/obj _arch/tools/prosper

DIAGNOSTICS

Executable for PROcess SPawnER. prosper is used to spawn a program when needed.
prosper was written for use under operating systems which don't support UNIX-style
fork(2)s. prosper simply spawns a specified program and waits for the program to signal a
semaphore. When the subprocess signals the semaphore, prosper spawns another copy of
the program and waits for it to signal the semaphore. And so on and so on.

When prosper spawns a program, it inserts a **-@ semaphore’’ option in the subprocess's
argument list. semaphore is the integer identifier of the semaphore that the subprocess
should signal when it is time for prosper to spawn another copy of the program.

prosper was specifically written to run TPOCC server processes under VMS (athough
prosper will compile, link, and run under UNIX). Some TPOCC programs such as TSTOL
and the Report Server execute as network servers. When a network connection request is
received, the server process forks a subprocess to handle the new connection. Under UNIX,
the new connection’s socket can be passed from the server process to the child process.
Not so under VMS! With prosper, the server process must act as both the server and the
child process. Initially, the server opens a listening port socket and waits for a connection
request. When a request is received, the server process closes its listening port socket, sig-
nals the prosper semaphore, and goes off to service the new connection. prosper, upon
being signalled, starts up a new server process, which creates a listening port socket, waits
for a connection request, etc., etc.

TSTOL’s -single_user option, originally intended for testing purposes only, turned out to be
just the ticket for the prosper mode of operation. Under VMS, the following command
sequence:

$ tstol :== $disk:[directory]tstol.exe
$ prosper tstol -mission mission -single user ... other TSTOL options ...

runs TSTOL as a single-user network server: when the server process receives a connection
request from an operator interface task, another server process is spawned to listen for the
next connection request.

Meaningful error messages are generated.

LIMITATIONS

Compile-time limits are defined in header file max.h:

Sun Release 4.1

Operator input lines are restricted to 1024 characters, as are procedure input lines. Con-
tinuation lines can be used for longer commands, although the total length of a wait until
directive should not exceed 1024 characters.

Variable names are limited to 32 characters.

Echo state saves can only be nested to a depth of 32.

Last change: 25 October 1993 52

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

BUGS

- 32 connections at most can be established with the remote directive.
There are no practical limits on:

- the length of a character string.

- the number of lines in a procedure file.

- the number of consecutive continuation lines in a procedure file.
- the number of arguments to a directive or procedure.

- the number of foreign directive definitions.

- the number of local or global symbols.

Currently, there is no controlled limit to the depth of nesting for if-then-else statements, do loops,
TSTOL procedures, and foreign directives. The size of the YACC token stack does limit the nesting
depth, but that limit may vary depending on what is being parsed. For example, while the stack may
support 8 levels of do loops or 8 levels of if statements, it may not support a combination of the two.
Some simple tests showed that the following numbers of tokens are required for each level of nesting: 6
tokens for an if-then block, 14 tokens for a for-do loop, 26 tokens for a TSTOL procedure, and 21
tokens for a foreign directive.

The YACC token stack is sized at compile-time by setting a C preprocessor macro called YYMAX-
DEPTH. The current setting is 512, which means that a recursive factorial procedure is able to com-
pute 19!, but not 20!. If the YACC token stack does overflow, an error message is output to the opera-
tor and the parser restarts itself. Restarting TSTOL is essentially equivalent to entering killproc all fol-
lowed by \reset; the values of global variables are preserved. (When tstol is built under HP/UX, macro
~ RUNTIME_YYMAXDEPTH is defined, which enables dynamic sizing of the YACC stack at run-
time. Since the stack can now grow as needed, stack overflow is an unlikely event.)

(The following figures have not been updated recently.) Some rough benchmark testing of ICE/IMP
TSTOL was performed using the mgrsim state manager simulator (a precursor to maple); tstol was
running in its terminal interface mode with procedure echoing turned off. The first test procedure con-
sisted of a for loop that output 5 spacecraft commands per iteration (and waited for status responses
from mgrsim for each command output). The result: 1000 spacecraft commands output at a rate of 50
commands per second. The second test procedure initiated a spacecraft command dialog and then fed
1000 dialog-mode commands to the state manager (and waited for dialog mode responses from mgrsim
for each line of dialog input). The result: 1000 spacecraft commands output at a rate of 130 commands
per second. The tests were performed on a Sun SPARCgation 1 workstation, with both tstol and
mgrsim running on the same machine. Both test procedures were also performed with tstol running on
the SPARCstation and mgrsim running on a Sun-3/80: slower, but till a respectable 40 commands per
second for the first test and 95 commands per second for the second test.

Not too many, | hope!

Dialog-mode sequences in procedures are problematic. The parsing of the dialog responses are the
responsibility of the application that requested them. TSTOL is unable to parse them and, in particular,
to determine where the sequence ends. As a result, dialog-mode sequences can’'t be embedded in if-
then-else constructs and nor can you goto around them. An awkward work-around is to store each
dialog-mode sequence in a separate procedure file and to conditionally execute the appropriate start
directives in a higher-level, driver procedure.

Branching to an undefined label or line number in a procedure effectively aborts the procedure.
TSTOL scans all the way through to the endproc looking for the label or line number. By the time the
endproc is reached and TSTOL has realized the destination is invalid, the procedure has exited. Con-
ceivably, the procedure could be halted at the endproc and not allowed to exit, but it would definitely
be impossible to restore the parse context at the time the offending goto directive (or whatever) was
parsed. Thisis primarily a problem when TSTOL isin a wait state (due to an error or a wait directive)
and the operator interactively enters a goto or position directive to change the control flow of the

Sun Release 4.1 Last change: 25 October 1993 53

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

procedure. Many, but not al, of these cases could be eliminated by letting the procedure itself jump
around in response to errors or other conditions.

A potential problem exists for watchpoints. When a system variable is referenced in an expression,
tstol sends a one-shot data request to the data server and waits until that variable's value is received. If
two or more values for a single watchpoint are received between the time the one-shot request goes out
and the requested value comes in, then each new watchpoint value overwrites the preceding one. This
is unlikely to be a problem unless you are dealing with a high-rate synchronous data stream.

The lexical analyzer can be built by the standard LEX processor or by GNU'’s super-LEX processor,
FLEX. The FLEX-generated lexer did have some problems scanning quoted strings with embedded
guotes. | forget the details (it's been a year and a half), but the lexer apparently was trying to back-
track into a previous buffer of input. | didn’t delve into the problem too deeply (we had LEX after all),
so use FLEX at your own risk!

The shift/reduce conflicts (203 at last count) reported by YACC when it generates the parser are not of
serious concern. The one ‘‘true’”’ shift/reduce conflict is caused by the spacecraft command *‘/’ mark.
If ““/"" is encountered during the scan of an ‘‘if expr command'’ directive, the parser can't tell if *‘/"" is
a division operator embedded in expr or the start of a spacecraft command directive in command. The
parser assumes the former interpretation.

The ligt of attributes in a pause directive accounts for 14 of the shift/reduce conflicts. When faced with
one of the 3 possible attributes (inline, not inline, and timeout) at the beginning of an attribute list, the
parser could (but doesn’t) insert an empty attribute into the list. Likewise, in the middle of or at the
end of the list, the parser could (but doesn't) insert an empty attribute when faced with one of the 3
possible attributes or the end-of-line separator. A duplicate set of 7 shift/reduce conflicts occurs for the
transact directive, which also makes use of the pause attributes.

The other shift/reduce conflicts (188 so far) are al related to the fact that TSTOL allows either blanks
or commas as argument separators. The TSTOL parser does not actually see blanks in the input; the
grammar rule for two consecutive arguments separated by blanks or commas is simply *‘arg list =>
argl field sep arg2'’, where *‘field sep => <empty> | comma’’. The shift/reduce conflicts include the
following:

60 conflicts - When parsing input according to the rule for starting TSTOL procedures,
“‘directive => start procedure (argl, argz, ...)",
the parser could (but doesn’'t) insert an empty arg0 between the left
parenthesis and the first argument. (The parser will recognize an empty
argument if the first token after the parenthesis is a comma.)

60 conflicts - Foreign directives are basically start directives without the parentheses.
Consequently, the grammar rule for foreign directive invocation,
“‘foreign directive => keyword argl, arg2, ..."”’,
suffers the same shift/reduce conflicts as the rule for start directives. In this
case, the conflict occurs between the keyword and the first argument.

60 conflicts - Once into the argument list, the parser can till run into problems. After
moving beyond the comma separating argl from arg2, the parser could (but
doesn’t) insert an empty argl.5.

6 conflicts - Immediately after processing an argument, the parser could recognize an
empty (blank) field separator, no matter what input follows. This is the
correct interpretation in most cases, except when the next input token is a
non-empty (comma) field separator (in the middle of an argument list), an
end-of-line separator (which terminates a foreign directive’s argument list),
or a right parenthesis (which terminates a start directive’s argument list).
The parser resolves each of these conflicts correctly.

2 conflicts - The two unary operators, ‘‘+"’ and **—’, are another source of confusion for

Sun Release 4.1 Last change: 25 October 1993 54

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

the parser. Faced with *‘2+3"’ in the middle of an argument list, the parser
could (but doesn’t) parse the input as two arguments, 2 and +3. Instead the
input is interpreted as a single argument whose value is 5.

Although formal parameter lists in procedure and foreign directive definitions look like argument lists,
they do not cause shift/reduce conflicts. This is because an argument list can contain empty arguments,
but a parameter list cannot contain empty parameters.

In the 3 groups of 60s, a conflict is generated for each possible token that could lead off a new expres-
sion (i.e., the next argument): numbers, strings, %-functions, sin, cos, etc. Adding a new data type or
function will automatically increase the number of shift/reduce conflicts by three.

By only allowing commas to separate arguments, all the shift/reduce conflicts above (except the space-
craft command one) were eliminated. Having the lexical analyzer explicitly detect ‘‘blank’ field
separators also eliminated the conflicts, but proved too restrictive on TSTOL's free-format input. Since
YACC assumes the desired interpretation in each case, the shift/reduce conflicts are an aesthetic prob-
lem, not a functional problem.

VERSIONS
| left the TPOCC project in February of 1992 and went to work on the X-SAR project, on which we
ported TPOCC to VAX/VMS. The last release of TPOCC that we received was 7.0, athough the port
of TSTOL is actually the Release 6.1 version of TSTOL, ported and upgraded with most of the func-
tionality added in Release 7.0's version of TSTOL. This manua documents the X-SAR version of
TSTOL. Most of the manual also applies to TPOCC Release 7.0's version of TSTOL; exceptions are
noted below.

The X-SAR version of TSTOL:
- can be built under either UNIX or VMS by ANSI or non-ANSI C compilers.

- utilizes ANSI C function prototypes for the TSTOL functions and for the TPOCC library
functions.

- uses ANSI C header files whenever possible.

- has been compiled with a compiler (VAX C) that performs the argument type checking
made possible by function prototypes.

- works with either a Bison- or a YACC-generated parser.

works with either a FLEX- or a LEX-generated scanner.

The X-SAR version of TSTOL has been enhanced with the following capabilities, none of which are
mission- or operating system-specific:

- X-SAR's TSTOL can function either as a client or as a server of the operator interface
task (see the -call and -answer command line options). TPOCC's TSTOL only supports
the server mode.

- X-SAR’'s TSTOL recognizes full-word command line options (e.g., -mission) as well as
TPOCC's single-letter options (e.g., -m).

- The **-@ semaphore’’ command line option makes it possible for TSTOL to be run as a
multi-process network server under operating systems that don’'t support the UNIX
fork(2) cal (e.g., VMS). (See the description of prosper in the FILES section.)

- Numeric exceptions (e.g., overflow, underflow, divide-by-zero, etc.) are trapped using the
portable UNIX signal (3) and setjmp(3)/longjmp(3) mechanisms.

- Several new local internal variables (%liv) have been added: errno, lex debug, and
net_debug.

- New % functions include %ds, %ident, %isint, %net, % shell, and % sour ce.

Sun Release 4.1 Last change: 25 October 1993 55

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

- The %ds function is used to send ASCII commands to the Data Server. This capability
is currently used to dynamically turn Data Server debug on and off and to display
memory statistics.

- The %net functions provide a flexible, powerful, and straightforward means of establish-
ing and communicating over network connections. These functions feature client- and
server-mode connections, background answering of server-mode connections; and the
ability to bind TSTOL directives to a connection’s answer, input, and error events.
TPOCC's remote and transact directives are still supported.

- The %shell functions provide access to the operating system’s command language inter-
preter (e.g, csh(1) under UNIX and DCL under VMS). Shell commands are written to a
single subprocess spawned to execute these commands; the output from such commands
can, in turn, be read by TSTOL.

- The watch events directive (and the X-SAR Event Server) recognizes full-word filtering
parameters (e.g., -critical) as well as TPOCC's single-letter parameters (e.g., -¢). A new
-substitute option allows for the arbitrary cutting and pasting of event message texts
(implemented in the Event Server).

- In most places, time intervals can be specified as rea numbers;, e.g., 1.234 seconds
instead of TPOCC's more limited choice of 1 or 2 seconds.

- When a status message is received from a remote process, TPOCC's TSTOL forwards
the message to the operator interface task (OPIO) in the form of a ‘' Directive Complete”’
message or, if there was an error, an error message. X-SAR's TSTOL, in contrast,
makes an informed guess as to the source of the original directive and sends the comple-
tion or error message to that source. For example, X-SAR’s menu interface, a remote
process to TSTOL, is our main source of directives and it expects status messages to be
returned to it, not to the ‘*operator interface’” task (TPOCC's xtpdsp program).

- The handling of syntax and similar errors is, | believe, more robust and general in X-
SAR's TSTOL.

Areas of incompatibility between X-SAR's TSTOL and TPOCC's TSTOL (as of TPOCC Release 7.0)
are few:

- X-SAR’'s TSTOL provides limited support for STOL's FORTRAN-inspired numeric con-
stants, e.g., X'1234', 0’765, etc. Standard C's notations for numeric constants are pre-
ferred and fully supported.

- X-SAR’'s %default function differs dlightly - the default expression is not evaluated if
the primary expression is defined.
- X-SAR's TSTOL provides 3 functions for testing if a string can be interpreted as a

number: %isint, %isreal, and the generic %isnum. TPOCC's TSTOL has %isreal and
%isnum; the latter only tests for integers.

- On X-SAR, text substitution is not applied to directives received on non-OPIO, network
connections.

- TPOCC's TSTOL was modified to look up interactively-entered variable names in the
global symbol table only. X-SAR's TSTOL retains the old local-first, then-global
scheme.

- There are dight differences in the generation of ‘‘Directive Complete’’ messages for
built-in directives.

So, which would | choose, the TPOCC version or the X-SAR version of TSTOL? X-SAR's TSTOL
version is more portable and more powerful; TPOCC's TSTOL is more closely integrated with the
TPOCC environment.

Sun Release 4.1 Last change: 25 October 1993 56

TSTOL (9) MISC. REFERENCE MANUAL PAGES TSTOL (9)

CONCLUSIONS
TSTOL ought to be eliminated! In the TPOCC environment, TSTOL is primarily used as a point of
contact between the distributed graphical user interface (GUI) tasks and the centralized State Manager
task. The intelligence that the GUI should have has been fobbed off on TSTOL; likewise, many of the
functions previously handled by MAE’s STOL have been pushed off to the State Manager.

My recommendation? The GUI should have an embedded interpreter for a command language such as
John Osterhout’s Tool Command Language, Tcl. For example, my own TWERP extensions to Tcl
(derived from my Motif-based WIMP extensions!) provide access to X, Motif, the TPOCC real-time
widgets, the TPOCC data server, and message-based network communications. A GUI incorporating
TWERP could load and animate TPOCC display screens, send messages to and receive messages from
remote processes (e.g., the State Manager or other applications), and anything else it might need to do -
all via user-programmable, Tcl scripts!

The State Manager, too, should have an embedded Tcl interpreter. For example, my own PICL exten-
sions to Tcl (derived from my non-X-based NICL extensions) provide access to the TPOCC data server
and to message-based network communications. With the appropriate Tcl extensions, a generic State
Manager could be written that provided mission-specific functionality through mission-specific Tcl
scripts.

AUTHOR
Alex Measday, Integral Systems, Inc. (301) 731-4233 alexm@vlsi.gsfc.nasa.gov

Sun Release 4.1 Last change: 25 October 1993 57

