
 February 16, 1995

 To: Stan Hilinski
 From: Alex Measday
 Subject: C’est Moi!

 Since you asked about Tcl, I thought I’d let you know what I’ve
 done with it. I’ve got two Tcl-based applications, one running on
 the Master Controller card under VxWorks and the other running on
 a workstation under UNIX:

 Master
 Controller Workstation
 .--------. .-----.
 | gentle |<----------->| moi |
 ‘--------’ ‘-----’

 moi (MEDS Operator Interface) is the user interface program you
 see running on my workstation sometimes, displaying event
 messages, status blocks, etc., received from the LZP system. moi
 is programmed in Tk, a superset of Tcl that includes support for X
 Windows and GUI objects.

 gentle (GENeric TcL sErver) is a network server program that
 provides each network client with its own Tcl interpreter.
 gentle’s Tcl has been extended with networking commands, memory
 access commands, and various MEDS commands (e.g., getAlias,
 logEvent, mapRam, waitInit, and a whole slew of the TPCE-LZP
 commands).

 moi and gentle communicate using ASCII strings (sent as XDR
 strings in XDR network records). For example, the event logging
 loop can be tested by:

 (1) Pressing moi’s "Ping Events" button to send a
 "logEvent code message" command to gentle.
 (2) gentle calls the MEDS eventmsg() function to log the
 message.
 (3) The MEDS event server then sends (via my mbc program)
 the event message back to moi.
 (4) moi adds the incoming message to its scrolling display
 of event messages.

 To display a particular status variable on the screen, moi:

 (1) Sends a "peek variable" command to gentle.
 (2) gentle retrieves the value of the specified variable,
 formats it in ASCII, and sends it back to moi.
 (3) moi reads the returned value and displays it on the
 screen.

 The above is a simplification of the exchange. The actual command
 sent to gentle is "region Get variable", where region specifies
 the MEDS status block (e.g., "APSTATUS") and variable is the name

 1

 of the field within the block. moi and gentle both make use of an
 object-oriented extension of Tcl: [incr Tcl] (the Tcl equivalent
 of C++). [incr Tcl] provides support for C++-like classes. In
 the command above, region is a memory region object that responds
 to a "Get" message by returning the value of the requested
 variable. region also responds to a "Set" message; for example:

 $xpstatus Set numRejectedFrames 100000000

 raises the XP’s rejected frame count to 100,000,000.

 A Quick Introduction to Tcl

 Tool Command Language (Tcl) is a simple, extensible, command
 language whose interpreter can be embedded in any application.
 "#"s indicate comment lines. The basic command syntax is:

 command argument(s)

 Arguments are frequently specified using UNIX-style "-" options;
 e.g.,

 Activate catalog -version N

 Curly braces and double quotes are used to enclose strings.
 Square brackets enclose nested commands. The following command:

 set xpstatus [Region #auto XPSTATUS -mapFunction mapSTS]

 evaluates the "Region" command (which creates a region object and
 maps to the XP status block) and stores the resulting value (a
 region handle) in variable "xpstatus".

 The value of a variable is referenced by prefixing a dollar sign
 to the variable name. In the following command:

 $xpstatus Get gsHealthMsg

 "$xpstatus" is replaced by the region handle returned above, so
 the actual command that will be executed is:

 regionHandle Get gsHealthMsg

 (This results in a "Get gsHealthMsg" command being sent to the
 region object.)

 Tcl makes Perl look like a cross between COBOL and APL.

 gentle - A Generic Tcl Server

 As mentioned before, gentle is a network server that provides each
 client with its own Tcl interpreter. When gentle receives a
 command from a client, it passes the command to that client’s

 2

 interpreter for execution. A "client write message" command
 allows the interpreter to send responses back to the client.
 gentle can also be run in tty mode (i.e., you type commands in at
 the command line) and on a UNIX workstation. For example, I can
 initiate a data session from the command line on my Sun:

 % gentle -tty
 set mcr [mcrOpen 3000@vxlzp1] -- Connect to MC.
 $mcr Activate DS8V2 -- Activate catalog DS8V2.
 set sds [mcrOpen 3000@128.183.92.97] -- Connect to Data Generator.
 $sds Activate DS8V2 -- Activate data generation.
 exit
 %

 gentle adds a number of commands to the base Tcl command set. In
 the listing below, optional command options are not shown. For
 example, the

 peek location

 command supports the following options:

 peek ?-address format? ?-format format?
 ?-signed? ?-type type? ?-unsigned? ?-write? location

 (Since square brackets have meaning in Tcl, Tcl documentation
 usually encloses optional arguments in question marks; e.g.,
 "?-type type?".)

 As another example, the full network call command supports these
 options:

 call server?@host? ?-nowait? ?-connect command?
 ?-error command? ?-input command?

 Networking Commands (UNIX and VxWorks)

 call server?@host?
 This command establishes a client connection with a
 network server.

 listen port
 listener answer
 listener close
 listener poll
 These commands listen for and answer connection requests
 from clients.

 connection close
 connection poll
 connection read
 connection write string
 These commands read and write information on a network
 connection.

 3

 Memory Access Commands (UNIX and VxWorks)

 (A signal handler is used to trap bus errors and access
 violations.)

 address -input location
 address -offset numBytes location
 address -delta base location
 These commands manipulate "%p" pointers (used in the
 other memory access commands).

 dump ?-count numBytes? location
 This command generates a formatted dump of a memory
 block.

 fill value start end
 This command replicates a value throughout a memory
 block.
 find value start end
 This command searches for a value in a memory block.

 peek location
 poke location value
 These commands read values from and store values in
 memory locations. Different data types are supported:
 signed and unsigned bytes, chars, shorts, ints, longs,
 floats, doubles, and strings.

 Shared Memory Commands (UNIX and VxWorks)

 map name
 This command maps a named, shared memory segment into
 the gentle process’s address space. Naming is
 implemented under UNIX using an NDBM database and, under
 VxWorks, using the system symbol table. (Commands for
 mapping to MEDS memory regions are found further down.)

 segment address
 segment load file
 segment save file
 segment size
 segment unmap
 These commands perform various operations on a mapped
 segment.

 Miscellaneous Commands (UNIX and VxWorks)

 client poll
 client read
 client write message
 These commands operate on the network connection (or TTY
 interface) to this interpreter’s client.

 4

 ping
 Pong!

 timer interval ?-command command? ?-periodic?
 timer cancel
 This command creates a one-shot or cyclic timer that,
 each time it fires, executes a Tcl command.

 tod
 This command returns the current time-of-day.

 MEDS Commands (UNIX and VxWorks)

 mcrOpen server?@host?
 This command establishes a network connection (hereafter
 called mcr) with a Master Controller.

 mcr Close
 mcr Connected
 mcr Poll
 These commands operate on a connection to a Master
 Controller.

 mcr Activate file
 mcr Distribute source destination user?@host?
 mcr ListCatalogs ?wildcard_spec?
 mcr ListDataSets ?-session ID?
 mcr LoopBack text
 mcr SendStatus ?interval?
 mcr Disable ?subsystem(s)?
 mcr Enable ?subsystem(s)?
 mcr Flush ?subsystem(s)?
 mcr NoOp ?subsystem(s)?
 mcr Reset ?subsystem(s)?
 mcr ShutDown ?subsystem(s)?
 mcr Test ?subsystem(s)?
 mcr Zero ?subsystem(s)?
 mcr TimeSpan start length ?-repeat?
 These commands send the respective commands to the
 Master Controller and wait for responses.

 MEDS Commands (VxWorks Only)

 getAlias name
 putAlias name value ?-global?
 showAlias
 These commands are used to access MEDS aliases.

 logEvent code message
 This command logs an event message.

 5

 mapGPA ?target?
 mapPCA ?target?
 mapSCB ?target?
 mapTCA ?target?
 mapRAM name ?-make size?
 mapSTS name ?-make size?
 These commands return the addresses of the various types
 of MEDS memory regions.

 waitInit
 It’s a long wait, sometimes!

 [incr Tcl] Classes (UNIX and VxWorks)

 The region class:

 class Region {
 member mapFunction -- Default is "mapRAM".
 constructor()
 destructor()
 method Fill() -- Defines fill space.
 method Define() -- Defines typed field.
 method Get() -- Gets value of field.
 method GetInfo() -- Indexed access to arbitrary info.
 method IndexedAddress() -- Computes address into array field.
 method Set() -- Stores value in field.
 method SetInfo() -- Indexed access to arbitrary info.
 }

 provides a concise means of mapping to and defining the layout of a
 MEDS memory region. For example, the following definition of the XP
 status region is found in "/folks/hilinski/lzp/etc/defineXP.tcl":

 # Map to XP status block.
 set xpstatus [Region #auto XPSTATUS -mapFunction mapSTS]
 # MEDS status header.
 DefineStatusHeader $xpstatus
 # XP information.
 $xpstatus Define inProgress {byte -unsigned}
 $xpstatus Define dataDirection char
 $xpstatus Fill byte 6
 $xpstatus Define sessionID -- Default data type is ULONGWORD.
 # Frame counts.
 $xpstatus Define numInputFrames
 $xpstatus Define numRejectedFrames
 $xpstatus Define ...

 A specific field in the status block can be retrieved:

 client write [$xpstatus Get numInputFrames]
 client write [$xpstatus Get gsHealthMsg]

 6

 or modified:

 $xpstatus Set numInputFrames 1234
 $xpstatus Set gsHealthMsg "Never been faster!"

 The "Info" methods are used to store arbitrary information. For
 example, to access particular entries in the XP’s Virtual Channel
 Status table, you need to know the size of an individual entry.
 "defineXP.tcl" computes and saves this information as follows:

 $xpvcs SetInfo sizeOfVCS \
 [expr [$xpvcs GetInfo nextOffset] - $baseOffset]]

 This information can be retrieved and passed to the "Get" and
 "Set" methods in order to access particular entries in the table.

 moi - The MEDS Operator Interface

 moi is a generic, Tcl/Tk-based, graphical user interface. Tk is a
 Motif-like, X Windows toolkit that contains an embedded Tcl
 interpreter; this allows user interfaces to be programmed entirely
 in Tcl - no C coding required. moi adds a couple of Tcl
 extensions: the gentle networking commands (e.g., call, listen,
 etc.) and the gentle timer command.

 moi initially reads a Tcl script file that defines the user
 interface. My file, "/folks/alexm/source/moi/lzp", connects moi
 to the gentle server and to the MEDS event server, and then
 creates the main window of my LZP interface; this window contains:

 - a menu bar,
 - a scrolling list of event messages,
 - an operator input line, and
 - several items of information from the segment directory.

 The menu bar has pull-down entries for:

 (1) Viewing Pages (e.g., the various subsystem status pages
 and the segment directory).
 (2) Commanding the LZP Rack.
 (3) Commanding the Spacecraft Data Simulator.

 [incr Tcl] Classes

 [incr Tcl] was used to great advantage in my "lzp" application. I
 defined the following classes:

 Box -- For grouping items on a page.
 Button
 CheckButton
 Dialog
 EntryDialog
 Field

 7

 Object1D
 BarGraph
 Dial
 Stripchart
 Page
 DisplayPage -- Periodically updates.
 MemoryPage -- For memory dumps.
 ScrolledList
 Separator
 Timer
 Variable -- Local variables.
 RemoteVariable -- Remote variables (on the LZP).

 Variable objects are used to get/set local/remote variables. In
 the case of a RemoteVariable, a "region Get variable" command is
 sent to the gentle server on the LZP system; the gentle server
 "peek"s the value and sends its back to moi.

 The display objects (Field, BarGraph, Dial, and Stripchart) each
 contain a Variable object, either local or remote. When you
 invoke the "Update" method of a display object, it "Get"s the
 value of its variable and updates its display. The most commonly
 used display object, Field, consists of a label and a
 display/entry field:

 .----------.
 Session ID: | 12345678 |
 ‘----------’

 When a Field is "Update"d, it retrieves the value of its variable
 and places it in the display/entry field. If you type in a new
 value in the display/entry field, the new value is stored in the
 variable (e.g., over on the LZP rack). A Field’s label can also
 function as a button. I use this capability in the Packet Break
 List page: clicking on the "Next Break" label advances the page to
 the next break entry.

 Box objects are used to group display objects. For example, a
 two-column display is created by placing two boxes side by side.
 Invoking "Update" on a box results in "Update" being applied to
 each display object in the box.

 Page objects provide a higher-level grouping of display objects.
 The bare-bones Page class is used for interactive pages; e.g., the
 LZP and SDS command panels. The DisplayPage class contains a
 timer that periodically invokes "Update" on the display objects
 (or boxes) in the page. Display pages are automatically given
 three buttons at the bottom of the window:

 Print - spools a PostScript dump of the page to the
 printer,
 Freeze - suspends/resumes updates, and
 Close - closes the page.

 8

 Memory pages display memory dumps from the LZP rack in a scrolling
 window.

 The ScrolledList class provides a generic scrolling list
 capability. Scrolled lists are used:

 (1) For the event message/command history display on moi’s
 main window.
 (2) To display catalog lists and data set lists on the LZP
 and SDS command panels.
 (3) To display memory dumps on a memory page.

 Individual items in a list can be selected; this capability is
 used in (1) to recall previous commands and in (2) to select a
 catalog to activate or a data set to distribute.

 Display Pages

 The Page class is defined in [incr Tcl] as:

 class Page {
 member displayWindow
 member infoArray
 member objectsArray
 member title
 constructor()
 destructor()
 method AddObj()
 method DeleteObj()
 method GetInfo()
 method GetObj()
 method Iterate()
 method Print()
 method SetInfo()
 }

 objectsArray is a list of the display objects on the page;
 infoArray is used to store and lookup arbitrary information.

 The DisplayPage class adds several new methods to the base Page
 class:

 class DisplayPage {
 inherit Page
 member updateInterval
 member isFrozen
 constructor() -- Creates Print, Freeze, Close buttons.
 destructor()
 method Freeze()-- Suspends/resumes updating.
 method Update()-- Updates each object in window.
 }

 The "Update" method "Iterate"s through the objectsArray, invoking
 the "Update" method of each display object in the array. The

 9

 "Update" method in an individual object retrieves its variable’s
 value (e.g., from the gentle server on the LZP rack) and updates
 its display.

 Creating a display page is a simple matter. The following example
 is taken from the script file that creates the XP status page (see
 "/folks/alexm/local/lib/tcl/lzp/xpstatus.tcl"):

 (1) Create a blank page:

 set page [DisplayPage #auto -title "XP Status"]
 set window [$page Window]

 (2) Add display objects (e.g., Fields, ScrolledLists,
 Stripcharts) to the page:

 CenteredText [$window] "-- XP Status --"
 $page AddObj inProgress \
 [Field #auto $window "Packet Output:" [...]]
 $page AddObj sessionID \
 [Field #auto $window "Session ID:" [...]]
 ... and so on ...

 "[...]" specifies what variable is bound to the Field and is
 omitted for the sake of clarity. When the page is created, a
 periodic timer is started; whenever the timer fires (e.g., every 5
 seconds), the page updates.

 moi currently supports the following display pages:

 Subsystem Status Pages -
 MC Status
 LZP Status
 HF Status
 RS Status
 XP Status
 VC Status (XP)
 Source Status (XP)
 RE Status
 AP Status
 DP Status

 Segment Directory Pages -
 Segment Directory Header (SDH)
 Session Description Table (SDT)
 Spacecraft Sensor List (SSL)
 Source Reference Table (SRT)
 Source Index Table (SIT)

 Packet Break List (PBL)
 AP Segment Ordered List (SOL)

 Because everything is coded in Tcl and [incr Tcl], you can add a
 new subsystem status page in 15 minutes or less:

 10

 (1) Create the status block definition script (e.g.,
 "defineXP.tcl") that maps to and defines the layout of
 the status block.

 (2) Create the subsystem status display page (e.g.,
 "pageXP.tcl").

 (3) Add a menu entry for the new page to the LZP script
 ("lzp").

 Modifying an existing page is just as easy and quick. Although I
 currently don’t do this, such changes could be made while moi is
 still running.

 MEDS Command Panels

 The MEDS command panels are used to send commands to the LZP and
 Spacecraft Data Simulator (SDS) racks. (Or to any rack, if
 desired.) Across the bottom of a command panel are two buttons:

 Connect - connects and disconnects from the target Master
 Controller.
 Cancel - exits the command panel; the MC connection, if up,
 stays up.

 Down the left side of the command panel is a column of Fields for:

 (1) Catalog name
 (2) Version number
 (3) Subsystems (for commands directed to subsystems)
 (4) Interval (for status updates)
 (5) Loopback text

 In the center of the command panel is a scrolling list of the
 available catalogs; clicking on a catalog moves its name to the
 catalog name Field. On the right side of the command panel is a
 column of buttons:

 Activate - activates the catalog whose name is found in
 the catalog name Field.
 Flush - flushes the current session.
 NoOp - sends a NoOp to the target subsystem(s).
 Reset - resets the target subsystem(s).
 Status - initiates the sending of status blocks.
 Zero - zeros the target subsystem(s).
 Distribute - invokes the data distribution panel.

 The Distribute button brings up the data distribution panel
 (useless for the SDS). This panel is similar to the command
 panel: the available data sets are displayed in a scrolling list
 and the Field entries on the left side are used for entering the
 information needed for FTP transfers. As with the command panel,
 clicking on a data set moves its name into the data set name
 Field.

